
fli4l – Developer documentation
Version 3.10.19

Frank Meyer
email: frank@fli4l.de

the fli4l-Team
email: team@fli4l.de

February 2, 2020

mailto:frank@fli4l.de
mailto:team@fli4l.de

Contents

1 Documentation for Developers 4
1.1 Common Rules . 4
1.2 Compiling Programs . 4
1.3 Module Concept . 5

1.3.1 mkfli4l . 5
1.3.2 Structure . 5
1.3.3 Configuration of Packages . 7
1.3.4 List of Files to Copy . 7
1.3.5 Checking Configuration Variables . 11
1.3.6 Own Definitions for Checking the Configuration Variables 13
1.3.7 Extended Checks of the Configuration 19
1.3.8 Support for Different Kernel Version Lines 34
1.3.9 Documentation . 34
1.3.10 File Formats . 36
1.3.11 Developer Documentation . 36
1.3.12 Client Programs . 36
1.3.13 Source Code . 36
1.3.14 More Files . 37

1.4 Creating Scripts for fli4l . 37
1.4.1 Structure . 37
1.4.2 Handling of Configuration Variables . 38
1.4.3 Persistent Data Storage . 38
1.4.4 Debugging . 39
1.4.5 Hints . 40

1.5 Using The Packet Filter . 41
1.5.1 Adding Own Chains And Rules . 41
1.5.2 Integrating Into Existing Rules . 41
1.5.3 Extending The Packet Filter Tests . 42

1.6 CGI-Creation for Package httpd . 44
1.6.1 General information about the web server 44
1.6.2 Script Names . 44
1.6.3 Menu Entries . 44
1.6.4 Construction of a CGI script . 45
1.6.5 Miscellaneous . 50
1.6.6 Debugging . 50

1.7 Boot, Reboot, Dialin And Hangup Under fli4l 51
1.7.1 Boot Concept . 51
1.7.2 Start And Stop Scripts . 51
1.7.3 Helper Functions . 53
1.7.4 ttyI Devices . 55

2

Contents

1.7.5 Dialin And Hangup Scripts . 56
1.8 Package “template"’ . 57
1.9 Structure of the Boot Medium . 57
1.10 Configuration Files . 58

1.10.1 Provider Configuration . 58
1.10.2 DNS Configuration . 59
1.10.3 Hosts File . 59
1.10.4 imond Configuration . 59
1.10.5 The File /etc/.profile . 60
1.10.6 Scripts in /etc/profile.d/ . 60

List of Figures 61

List of Tables 62

Index 63

3

1 Documentation for Developers

1.1 Common Rules
In order to include a new package in the OPT database on the fli4l homepage some rules must
be obeyed. Packages that do not comply with these rules may be removed from the database
without warning.

1. No file copy actions by the user! fli4l provides a sophisticated system to include the fli4l
packages into the installation archives. All files that should go to the router are located
in opt/.

2. Pack and compress packets properly: packages must be constructed in a way to allow
effortless unpacking into the fli4l directory.

3. Packages must be completely configurable via the config file. Further editing of config-
uration files shall not be required by the user. Keep difficult decisions away from the
users and move them to another part at the end of the configuration file. Note: ONLY
MODIFY IF YOU KNOW WHAT YOU DO.

4. Another hint for config files: by its name it has to be seen clearly which OPT it belongs
to. For example OPT_HTTPD contains the variables OPT_HTTPD, HTTPD_USER_N, a.s.o.

5. Please built binaries as small as possible! If you compile them yourself in FBR please
remember to deactive any unneeded feature.

6. Check for Copyrights! If using template files please keep in mind to change the Copyright
accordingly. This applies also for config-, check- and Opt text files. Replace the Copyright
with your own name. A documentation that was only copied of course has to keep the
Copyright of the orginal author!

7. Please use only free formats as archive types. These are:
• ZIP (.zip)
• GZIP (.tgz or .tar.gz)

Please don’t use other formats like RAR, ACE, Blackhole, LHA . . .Windows-Installer
files (.msi) or self-extracting archives and installers (.exe) should not be used.

1.2 Compiling Programs
The environment needed for compiling programs is available in the separate package “src"’.
There it is also documented how to compile own programs for fli4l.

4

1 Documentation for Developers

1.3 Module Concept
As of version 2.0 fli4l is split into modules (packages), i.e.

• fli4l-3.10.19 ă— The Base Package

• dns-dhcp

• dsl

• isdn

• sshd

• and much more...

With the base package fli4l acts as a pure Ethernet router. For ISDN and/or DSL the
packages isdn and/or dsl have to be unpacked to the fli4l directory. The same applies for the
other packages.

1.3.1 mkfli4l
Depending on the current configuration a file called rc.cfg and two archives rootfs.img
and opt.img will be generated which contain all required configuration informations and files.
These files are generated using mkfli4l which reads the individual package files and checks for
configuration errors.

mkfli4l will accept the parameters listed in table 1.1. If omitted the default values noted in
brackets are used. A complete list of all options (Table 1.1) is displayed when executing

mkfli4l -h

.

1.3.2 Structure
A package can contain multiple OPTs, if it contains only one, however, it is appropriate to
name the package like the OPT. Below <PACKAGE> is to be replaced by the respective package
name. A package consists of the following parts:

• Administrative Files

• Documentation

• Developer Documentation

• Client Programs

• Source Code

• More Files

The individual parts are described in more detail below.

5

1 Documentation for Developers

Table 1.1: Parameters for mkfli4l
Option Meaning

-c, - -config Declaration of the directory mkfli4l will scan for package config
files (default: config)

-x, - -check Declaration of the directory mkfli4l will scan for files needed
for package error checking (<package>.txt, <package>.exp and
<package>.ext; default: check)

-l, - -log Declaration of the log file to which mkfli4l will log error messages
and warnings (default: img/mkfli4l.log)

-p, - -package Declaration of the packages to be checked, this option may be used
more than once in case of a desired check for several packages in
conjunction. If using -p, however, the file <check_dir>/base.exp
will always be read first to provide the common regular expressions
provided by the base package. Hence, this file must exist.

-i, - -info Provides information on the check (which files are read, which
tests are run, which uncommon things happened during the review
process)

-v, - -verbose More verbose variant of option -i
-h, - -help Displays the help text
-d, - -debug Allows for debugging the review process. This is meant to be a

help for package developers wishing to know in detail how the
process of package checking is working.
Debug Option Meaning
check show check process
zip-list show generation of zip list
zip-list-skipped show skipped files
zip-list-regexp show regular expressions for ziplist
opt-files check all files in opt/<package>.txt
ext-trace show trace of extended checks

6

1 Documentation for Developers

1.3.3 Configuration of Packages
The user’s changes to the package’s configuration are made in the file config/<PACKAGE>.txt.
All the OPT’s variables should begin with the name of the OPT, for example:

#---
Optional package: TELNETD
#---
OPT_TELNETD='no' # install telnetd: yes or no
TELNETD_PORT='23' # telnet port, see also FIREWALL_DENY_PORT_x

An OPT should be prefixed by a header in the configuration file (see above). This increases
readability, especially as a package indeed can contain multiple OPTs. Variables associated to
the OPT should — again in the interest of readability — not be indented further. Comments
and blank lines are allowed, with comments always starting in column 33. If a variable including
its content has more than 32 characters, the comment should be inserted with a row offset,
starting in column 33. Longer comments are spread over multiple lines, each starting at column
33. All this increases easy review of the configuration file.
All values following the equal sign must be enclosed in quotes1 not doing so can lead to

problems during system boot.
Activated variables (see below), will be transferred to rc.cfg, everything else will be ignored.

The only exceptions are variables by the name of <PACKAGE>_DO_DEBUG. These are used for
debugging and are transferred as is.

1.3.4 List of Files to Copy
The file opt/<PACKAGE>.txt contains instructions that describe

• which files are owned by the OPT,

• the preconditions for inclusion in the opt.img resp. rootfs.img,

• what User ID (uid), Group ID (gid) and rights will be applied to files,

• which conversions have to be made before inclusion in the archive.

Based on this information mkfli4l will generate the archives needed.
Blank lines and lines beginning with “#” are ignored. In one of the first lines the version of

the package file format should be noted as follows:

<first column> <second column> <third column>
opt_format_version 1 -

The remaining lines have the following syntax:

<first column> <second column> <third column> <columns following>
Variable Value File Options

1Both single and double quotes are valid. You can hence write FOO=’bar’ as well as FOO="bar". The use of
double quotes should be an exception and you should previously inform about how an *nix shell uses single
and double quotes.

7

1 Documentation for Developers

1. The first column contains the name of a variable which triggers inclusion of the file
referenced in the third column depending on its value in the package’s config file. The
name of a variable may appear in the first column as often as needed if multiple files
depend on it. Any variable that appears in the file opt/<PACKAGE>.txt is marked by
mkfli4l.
If multiple variables should be tested for the same value a list of variables (separated by
commas) can be used instead. It is sufficient in this case if at least one variable contains
the value required in the second column. It is important not to use spaces between the
individual variables!
In OPT variables (ie variables that begin with OPT_ and typically have the type YESNO),
the prefix “OPT_” can be omitted. It does not matter whether variables are noted in
upper- or lowercase (or mixed).

2. The second column contains a value. If the variable in the first column is identical with
this value and is activated too (see below), the file referenced in the third column will be
included. If the first column contains a %-variable it will be iterated over all indices and
checked whether the respective variable matches the value. If this is the case copying
will be executed. In addition, the copy process based on the current value of the variable
will be logged.
It is possible to write a “!” in front of the value. In this case, the test is negated, meaning
the file is only copied if the variable does not contain the value.

3. In the third column a file name is referenced. The path must be given relative to the
opt directory. The file must exist and be readable, otherwise an error is raised while
generating the boot medium and the build process is aborted.
If the file name is prefixed with a “rootfs:” the file is included in the list of files to be
copied to the RootFS. The prefix will be stripped before.
If the file is located below the current configuration directory it is added to the list of
files to be copied from there, otherwise the file found below opt is taken. Those files are
not allowed to have a rootfs: prefix.
If the file to copy is a kernel module the actual kernel version may be substituted by
${KERNEL_VERSION}. mkfli4l will then pick the version from the configuration and place
it there. Using this you may provide modules for several kernel versions for the package
and the module matching the current kernel version will be copied to the router. For
kernel modules the path may be omitted, mkfli4l will find the module using modules.dep
and modules.alias, see the section “Automatically Resolving Dependencies for Kernel
Modules” (Page 11).

4. the other columns may contain the options for owner, group, rights for files and conversion
listed in table 1.2.

Some examples:

• copy file if OPT_TELNETD='yes', set its uid/gid to root and the rights to 755 (rwxr-xr-x)

telnetd yes files/usr/sbin/in.telnetd mode=755

8

1 Documentation for Developers

Table 1.2: Options for Files
Option Meaning Default Value
type= Type of the Entry:

local Filesystem Object
file File
dir Directory
node Device
symlink (symbolic) Link

This option has to be placed in front when
given. The type “local” represents the type
of an object existing in the file system and
hence matches “file”, “dir”, “node” or “symlink”
(depends). All other types except for “file” can
create entries in the archive that do not have
to exist in the local file system. This can i.e.
be used to create devices files in the RootFS
archive.

local

uid= The file owner, either numeric or as a name from
passwd

root

gid= File group, either numeric or as a name from
group

root

mode= Access rights Files and Devices:
rw-r--r-- (644)
Directories:
rwxr-xr-x (755)
Links:
rwxrwxrwx (777)

flags=
(type=file)

Conversions before inclusion in the archive:

utxt Conversion to *nix format
dtxt Conversion to DOS format
sh Shell-Skript: Conversion to *nix for-

mat, stripping of superfluous chars
name= Alternative name for inclusion of the entry in the

archive
devtype=
(type=node)

Descibes the type of the device (“c” for character
and “b” für block oriented devices). Has to be
placed in second position.

major=
(type=node)

Decribes the so-called “Major” number of the de-
vice file. Has to be placed in third position.

minor=
(type=node)

Decribes the so-called “Minor” number of the de-
vice file. Has to be placed in fourth position.

linktarget=
(type=symlink)

Describes the target of the symbolic link. Has to
be placed in second position.

• copy file, set uid/gid to root, the rights to 555 (r-xr-xr-x) and convert the file to *nix
format while stripping all superfluous chars

base yes etc/rc0.d/rc500.killall mode=555 flags=sh

9

1 Documentation for Developers

• copy file if PCMCIA_PCIC='i82365', set uid/gid to root and the rights to 644 (rw-r--r--)

pcmcia_pcic i82365 files/lib/modules/${KERNEL_VERSION}/pcmcia/i82365.ko

• copy file if one of the NET_DRV_% variables matches the second field, set uid/gid to root
and the rights to 644 (rw-r--r--)

net_drv_% 3c503 3c503.ko

• copy file if the variable POWERMANAGEMENT does not contain the value “none”:

powermanagement !none etc/rc.d/rc100.pm mode=555 flags=sh

• copy file if any of the OPT variables OPT_MYOPTA or OPT_MYOPTB contains the value “yes”:

myopta,myoptb yes files/usr/local/bin/myopt-common.sh mode=555 flags=sh

This example is only an abbreviation for:

myopta yes files/usr/local/bin/myopt-common.sh mode=555 flags=sh
myoptb yes files/usr/local/bin/myopt-common.sh mode=555 flags=sh

And the latter is a shorthand notation for:

opt_myopta yes files/usr/local/bin/myopt-common.sh mode=555 flags=sh
opt_myoptb yes files/usr/local/bin/myopt-common.sh mode=555 flags=sh

• copy file opt/files/usr/bin/beep.sh to the RootFS archive, but rename it to bin/beep
before:

base yes rootfs:files/usr/bin/beep.sh mode=555 flags=sh name=bin/beep

The files will be copied only if the above conditions are met and OPT_PACKAGE='yes' of
the corresponding package is set. What OPT variable is referenced is decribed in the file
check/<PACKAGE>.txt.
If a variable is referenced in a package that is not defined by the package itself, it may happen

that the corresponding package is not installed. This would result in an error message from
mkfli4l, as it expects that all of the variables referenced by opt/<PACKAGE>.txt are defined.
To handle this situation correctly the “weak” declaration has been introduced. It has the

following format:
weak <Variable> -

By this the variable it is defined (if not already existing) and its value is set to “undefined”.
Please note that the prefix “OPT_" must be provided (if existing) because else a variable without
this prefix will be created.
An example taken from opt/rrdtool.txt:
weak opt_openvpn -
[...]
openvpn yes files/usr/lib/collectd/openvpn.so

Without the weak definition mkfli4l would display an error message when using the package
“rrdtool” while the “openvpn” package is not activated. By using the weak definition no error
message is raised even in the case that the “openvpn” package does not exist.

10

1 Documentation for Developers

Files adapted by Configuration

In some situations it is desired to replace original files with configuration-specific files for
inclusion in the archive, i.e. host keys, own firewall scripts, . . . mkfli4l supports this scenario
by checking whether a file can be found in the configuration directory and, if so, including this
one instead in the file list for opt.img resp. rootfs.img.

Another option to add configuration-specific files to an archive is decribed in the section
Extended Checks of the Configuration (Page 28).

Automatically Resolving Dependencies for Kernel Modules

Kernel modules may depend on other kernel modules. Those must be loaded before and
therefore also have to be added to the archive. mkfli4l resolves this dependencies based on
modules.dep and modules.alias (two files generated during the kernel build), automatically
including all required modules in the archives. Thus, for example the following entry

net_drv_% ne2k-pci ne2k-pci.ko

triggers that both 8390.ko and crc32.ko are included in the archive because ne2k_pci depends
on both of them.

The necessary entries from modules.dep and modules.alias are included in the RootFS
and can be used by modprobe for loading the drivers.

1.3.5 Checking Configuration Variables
By the help of check/<PACKAGE>.txt the content of variables can be checked for validity. In
earlier version of the program mkfli4l this check was hard coded there but it was outsourced
to the check files in the course of modularizing fli4l. This file contains a line for each variable in
the config files. These lines consist of four to five columns which have the following functions:

1. Variable: this column specifies the name of the configuration file variable to check. If this
is an array variable, it can appear multiple times with different indices, so instead of the
index number a percent sign (%) is added to the variable name. It is always used as “_%_”
in the middle of a name resp. “_%” at the end of a name. The name may contain more
than one percent sign allowing the use of multidimensional arrays. It is recommended
(but not mandatory) to add some text between the percent signs to avoid weird names
like “FOO_%__%”.
Often the problem occurs that certain variables describe options that are needed only
in some situations. Therefore variables may be marked as optional. Optional variables
are identified by the prefix “+”. They may then exist, but do not have to. Arrays can
also use a “++” prefix. Prefixed with a “+” the array can exist or be entirely absent.
Prefixed with a“++” in addition some elements of the array may be missing.

2. OPT_VARIABLE: This column assigns the variable to a specific OPT. The variable is checked
for validity only if the OPT variable is set to “yes”. If there is no OPT variable a “-”
indicates this. In this case, the variable must be defined in the configuration file, unless
a default value is defined (see below). The name of the OPT variable may be arbitrary
but should start with the prefix “OPT_”.

11

1 Documentation for Developers

If a variable does not depend on any OPT variables, it is considered active. If it is
depending on an OPT variable, it is precisely active if

• its OPT variable is active and
• its OPT variable contains the value “yes”.

In all other cases the variable is inactive.
Hint: Inactive OPT variables will be set back to “no” by mkfli4l if set to “yes” in
the configuration file, an appropriate warning will be generated then (i.e. OPT_Y='yes'
is ignored, because OPT_X='no'). For transitive dependency chains (OPT_Z depends on
OPT_Y which in turn depends on OPT_X) this will only work reliable, if the names of all
OPT-variables start with “OPT_”.

3. VARIABLE_N: If the first column contains a variable with a “%” in its name, it indi-
cates the number of occurrences of the variable (the so-called N-variable). In case of a
multi-dimensional variable, the occurences of the last index are specified. If the variable
depends on a certain OPT, the N-variable must be dependant on the same or no OPT. If
the variable does not depend on any OPT, the N-variable also shouldn’t. If no N-variable
exists, specify “-” to indicate that.
For compatibility with future versions of fli4l the variable specified here must be identical
with the variable in OPT_VARIABLE where the last “%” is replaced by an “N” and everything
following is removed. An array HOST_%_IP4 must have the N-Variable HOST_N assigned and
an array PF_USR_CHAIN_%_RULE_% hence the N-variable PF_USR_CHAIN_%_RULE_N, and this
N-variable itself is an array variable with the corresponding N-variable PF_USR_CHAIN_N.
All other namings of the N variables will be incompatible with future versions of fli4l!

4. VALUE: This column provides the values a variable can hold. For example the following
settings are possible:
Name Meaning
NONE No error checking will be done
YESNO The variable must be “yes” or “no”
NOTEMPTY The variable can’t be empty
NOBLANK The variable can’t contain spaces
NUMERIC The variable must be numeric
IPADDR The variable must be an IP address
DIALMODE The variable must be “on”, “off” or “auto”

I values are prefixed by “WARN_” an illegal content will not raise an error message and
abort the build by mkfli4l, but only display a warning.
The possible checks are defined by regular expressions in check/base.exp. This file may
be extended and now contains some new checking routines, for example: HEX, NUMHEX,
IP_ROUTE, DISK and PARTITION.
The number of expressions may be extended at any time for the future needs of package
developers. Provide feedback!
In addition, regular expressions can also be directly defined in the check-files, even rela-
tions to existing expressions can be made. Instead of YESNO you could, for example also
write

12

1 Documentation for Developers

RE:yes|no.

This is useful if a test is performed only once and is relatively easy. For more details see
the next chapter.

5. Default Setting: In this column, an optional default value for the variables can be defined
in the case that the variable is not specified in the configuration file.
Hint: At the moment this does not work for array variables. Additionally, the variable
can’t be optional (no “+” in front of the variable name).
Example:

OPT_TELNETD - - YESNO "no"

If OPT_TELNETD is missing in the config file, “no” will be assumed and written as a value
to rc.cfg.

The percent sign thingie is best decribed with an example. Let’s assume check/base.txt
amongst others has the following content:

NET_DRV_N - - NUMERIC
NET_DRV_% - NET_DRV_N NONE
NET_DRV_%_OPTION - NET_DRV_N NONE

This means that depending on the value of NET_DRV_N the variables NET_DRV_N, NET_DRV_1_-
OPTION, NET_DRV_2_OPTION, NET_DRV_3_OPTION, a.s.o. will be checked.

1.3.6 Own Definitions for Checking the Configuration Variables
Introduction of Regular Expressions

In version 2.0 only the above mentioned value ranges for variable checks existed: NONE, NOTEMPTY,
NUMERIC, IPADDR, YESNO, NOBLANK, DIALMODE. Checking was hard-coded to mkfli4l, not expand-
able and restricted to essential “data types” which could be evaluated with reasonable efforts.
As of version 2.1 this checking has been reimplemented. The aim of the new implementation

is a more flexible testing of variables, that is also able to examine more complex expressions.
Therefore, regular expressions are used that can be stored in one or more separate files. This
on one hand makes it possible to examine variables that are not checked for the moment and
on the other hand, developers of optional packages can now define own terms in order to check
the configuration of their packages.
A description of regular expressions can be found via “man 7 regex” or i.e. here:

http://unixhelp.ed.ac.uk/CGI/man-cgi?regex+7.

Specification of Regular Expressions

Specification of regular expressions can be accomplished in two ways:

1. Package specific exp files check/<PACKAGE>.exp
This file can be found in the check directory and has the same name as the package
containing it, i.e. check/base.exp. It contains definitions for expressions that can

13

http://unixhelp.ed.ac.uk/CGI/man-cgi?regex+7

1 Documentation for Developers

be referenced in the file check/<PACKAGE>.txt. check/base.exp for example at the
moment contains definitions for the known tests and check/isdn.exp a definition for the
variable ISDN_CIRC_x_ROUTE (the absence of this check was the trigger for the changes).
The syntax is as follows (again, double quotes can be used if needed):

<Name> = '<Regular Expression>' : '<Error Message>'

as an example check/base.exp:

NOTEMPTY = '.*[^]+.*' : 'should not be empty'
YESNO = 'yes|no' : 'only yes or no are allowed'
NUMERIC = '0|[1-9][0-9]*' : 'should be numeric (decimal)'
OCTET = '1?[0-9]?[0-9]|2[0-4][0-9]|25[0-5]'

: 'should be a value between 0 and 255'
IPADDR = '((RE:OCTET)\.){3}(RE:OCTET)' : 'invalid ipv4 address'
EIPADDR = '()|(RE:IPADDR)'

: 'should be empty or contain a valid ipv4 address'
NOBLANK = '[^]+' : 'should not contain spaces'
DIALMODE = 'auto|manual|off' : 'only auto, manual or off are allowed'
NETWORKS = '(RE:NETWORK)([[:space:]]+(RE:NETWORK))*'

: 'no valid network specification, should be one or more
network address(es) followed by a CIDR netmask,
for instance 192.168.6.0/24'

The regular expressions can also include already existing definitions by a reference. These
are then pasted to substitute the reference. This makes it easier to construct regular
expressions. The references are inserted by ’(RE: Reference)’. (See the definition of the
term NETWORKS above for an appropriate example.)
The error messages tend to be too long. Therefore, they may be displayed on multiple
lines. The lines afterwards always have to start with a space or tab then. When reading
the file check/<PACKAGE>.exp superfluous whitespaces are reduced to one and tabs are
replaced by spaces. An entry in check/<PACKAGE>.exp could look like this:

NUM_HEX = '0x[[:xdigit:]]+'
: 'should be a hexadecimal number

(a number starting with "0x")'

2. Regular expressions directly in the check file check/<PACKAGE>.txt
Some expressions occur but once and are not worth defining a regular expression in a
check/<PACKAGE>.exp file. You can simply write this expression to the check file for
example:

Variable OPT_VARIABLE VARIABLE_N VALUE
MOUNT_BOOT - - RE:ro|rw|no

MOUNT_BOOT can only take the value “ro”, “rw” or “no”, everything else will be denied.
If you want to refer to existing regular expressions, simply add a reference via ‘(RE:...)”.
Example:

Variable OPT_VARIABLE VARIABLE_N VALUE
LOGIP_LOGDIR OPT_LOGIP - RE:(RE:ABS_PATH)|auto

14

1 Documentation for Developers

Expansion of Existing Regular Expressions

If an optional package adds an additional value for a variable which will be examined by a
regular expression, then the regular expression has to be expanded. This is done simply by
defining the new possible values by a regular expression (as described above) and complement
the existing regular expression in a separate check/<PACKAGE>.exp file. That an existing
expression is modified is indicated by a leading “+”. The new expression complements the
existing expression by appending the new value to the existing value(s) as an alternative. If
another expression makes use of the complemented expression, the supplement is also there.
The specified error message is simply appended to the end of the existing one.

Using the Ethernet driver as an example this could look like here:

• The base packages provides a lot of Ethernet drivers and checks the variable NET_DRV_x
using the regular expression NET_DRV, which is defined as follows:

NET_DRV = '3c503|3c505|3c507|...'
: 'invalid ethernet driver, please choose one'

' of the drivers in config/base.txt'

• The package “pcmcia” provides additional device drivers, and hence has to complement
NET_DRV. This is done as follows:

PCMCIA_NET_DRV = 'pcnet_cs|xirc2ps_cs|3c574_cs|...' : ''
+NET_DRV = '(RE:PCMCIA_NET_DRV)' : ''

Now PCMCIA drivers can be chosen in addition.

Extend Regular Expressions in Relation to YESNO Variables

If you have extended NET_DRV with the PCMCIA drivers as shown above, but the package
“pcmcia” has been deactivated, you still could select a PCMCIA driver in config/base.txt
without an error message generated when creating the archives. To prevent this, you may
let the regular expression depend on a YESNO variable in the configuration. For this purpose,
the name of the variable that determines whether the expression is extended is added with
brackets immediately after the name of the expression. If the variable is active and has the
value “yes”, the term is extended, otherwise not.

PCMCIA_NET_DRV = 'pcnet_cs|xirc2ps_cs|3c574_cs|...' : ''
+NET_DRV(OPT_PCMCIA) = '(RE:PCMCIA_NET_DRV)' : ''

If specifying OPT_PCMCIA='no' and using i.e. the PCMCIA driver xirc2ps_cs in
config/base.txt, an error message will be generated during archive build.

Hint: This does not work if the variable is not set explicitely in the configuration file but
gets its value by a default setting in check/<PACKAGE>.txt. In this case the variable hence
has to be set explicitely and the default setting has to be avoided if necessary.

15

1 Documentation for Developers

Extending Regular Expressions Depending on other Variables

Alternatively, you may also use arbitrary values of variables as conditions, the syntax looks
like this:

+NET_DRV(KERNEL_VERSION=~'^3\.16\..*$') = ...

If KERNEL_VERSION matches the given regular expression (if any of the kernels of the 3.16 line
is used) then the list of network driver allowed is extended with the drivers mentioned.

Hint: This does not work if the variable is not set explicitely in the configuration file but
gets its value by a default setting in check/<PACKAGE>.txt. In this case the variable hence
has to be set explicitely and the default setting has to be avoided if necessary.

Error Messages

If the checking process detects an error, an error message of the following kind is displayed:

Error: wrong value of variable HOSTNAME: '' (may not be empty)
Error: wrong value of variable MOUNT_OPT: 'rx' (user supplied regular expression)

For the first error, the term was defined in a check/<PACKAGE>.exp file and an expla-
nation of the error is displayed. In the second case the term was specified directly in a
check/<PACKAGE>.txt file, so there is no additional explanation of the error cause.

Definition of Regular Expressions

Regular expressions are defined as follows:
Regular expression: One or more alternatives, separated by ’|’, i.e. “ro|rw|no”. If one option

matches, the whole term matches (in this case “ro”, “rw” and “no” are valid expressions).
An alternative is a concatenation of several sections that are simply added.
A section is an “atom”, followed by a single “*”, “+”, “?” or “{min, max}”. The meaning is

as follows:

• “a*” — as many “a”s as wished (allows also no “a” is existing at all)

• “a+” — at least one“a”

• “a?” — none or one “a”

• “a{2,5}” — two to five “a”s

• “a{5}” — exactly five “a”s

• “a{2,}” — at least two “a”s

• “a{,5}” — a maximum of five “a”s

An “atom” is a

• regular expression enclosed in brackets, for example “(a|b)+” matches any string con-
taining at least one “a” or “b”, up to an arbitrary number and in any order

16

1 Documentation for Developers

• an empty pair of brackets stands for an “empty” expression

• an expression in square brackets “[]” (see below)

• a dot “.”, matching an arbitrary character, for example a “.+” matches any string con-
taining at least one char

• a “ˆ ” represents the beginning of a line, for example a “ˆ a.*” matches a string beginning
with an “a” followed by any char like in “a” or “adkadhashdkash”

• a “$” represents the end of a line

• a “z” followed by one of the special characters ˆ . [$ () | * + ? { z stands for the second
char without its special meaning

• a normal char matches exactly this char, for example “a” matches exactly an “a”.

An expression in square brackets indicates the following:

• “x-y” — matches any char inbetween “x” and “y”, for example “[0-9]” matches all chars
between “0” and “9”; “[a-zA-Z]” symbolizes all chars, either upper- or lowercase.

• “ˆ x-y” — matches any char not contained in the given interval, for example “[ˆ 0-9]”
matches all chars except for digits.

• “[:character-class:]” — matches a char from character-class. Relevant standard character
classes are: alnum, alpha, blank, digit, lower, print, punct, space, upper and xdigit.
I.e. “[[:alpha:]]” stands for all upper- or lowercase chars and hence is identical with
“[[:lower:] [:upper:]]”.

Examples for regular Expressions

Let’s have a look at some examples!
NUMERIC: A numeric value consists of at least one, but otherwise any number of digits. “At

least one” is expressed with a “+”, one digit was already in an example above. So this results
in:

NUMERIC = '[0-9]+'

or alternatively

NUMERIC = '[[:digit:]]+'

NOBLANK: A value that does not contain spaces, is any char (except for the char “space”) and
any number of them:

NOBLANK = '[^]*'

or, if the value is not allowed to be empty:

NOBLANK = '[^]+'

17

1 Documentation for Developers

IPADDR: Let’s have a look at an example with an IP4-address. An ipv4 address consists of
four “Octets”, divided by dots (“.”). An octet is a number between 0 and 255. Let’s define an
octet at first. It may be

a number between 0 and 9: [0-9]
a number between 10 and 99: [1-9][0-9]
a number between 100 and 199: 1[0-9][0-9]
a number between 200 and 249: 2[0-4][0-9]
a number between 250 and 255: 25[0-5]

All are alternatives hence we concatenate them with “|” forming one expression: “[0-9]|[1-
9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5]” and get an octet. Now we compose an IP4 address, four
octets divided by dots (the dot must be masked with a backslash, because else it would represent
an arbitrary char). Based on the syntax of an exp-file it would look like this:

OCTET = '[0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5]'
IPADDR = '((RE:OCTET)\.){3}(RE:OCTET)'

Assistance for the Design of Regular Expressions

If you want to design and test regular expressions, you can use the “regexp” program located
in the unix or windows directory of the package “base”. It accepts the following syntax:

usage: regexp [-c <check dir>] <regexp> <string>

The parameters explained in short:

• <check dir> is the directory containing check and exp files. These are read by “regexp”
to use expressions already defined there.

• <regexp> is the regular expression (enclosed in '...' or "..." if in doubt, with double
quotes needed only if single quotes are used in the expression itself)

• <string> is the string to be checked

This may for example look like here:

./i586-linux-regexp -c ../check '[0-9]' 0
adding user defined regular expression='[0-9]' ('^([0-9])$')
checking '0' against regexp '[0-9]' ('^([0-9])$')
'[0-9]' matches '0'

./i586-linux-regexp -c ../check '[0-9]' a
adding user defined regular expression='[0-9]' ('^([0-9])$')
checking 'a' against regexp '[0-9]' ('^([0-9])$')
regex error 1 (No match) for value 'a' and regexp '[0-9]' ('^([0-9])$')

./i586-linux-regexp -c ../check IPADDR 192.168.0.1
using predefined regular expression from base.exp
adding IPADDR='((RE:OCTET)\.){3}(RE:OCTET)'
('^(((1?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])\.){3}(1?[0-9]?[0-9]|2[0-4][0-9]|25[0-5]))$')

'IPADDR' matches '192.168.0.1'

18

1 Documentation for Developers

./i586-linux-regexp -c ../check IPADDR 192.168.0.256
using predefined regular expression from base.exp
adding IPADDR='((RE:OCTET)\.){3}(RE:OCTET)'
('^(((1?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])\.){3}(1?[0-9]?[0-9]|2[0-4][0-9]|25[0-5]))$')

regex error 1 (No match) for value '192.168.0.256' and regexp
'((RE:OCTET)\.){3}(RE:OCTET)'

(unknown:-1) wrong value of variable cmd_var: '192.168.0.256' (invalid ipv4 address)

1.3.7 Extended Checks of the Configuration
Sometimes it is necessary to perform more complex checks. Examples of such complex things
would be i.e. dependencies between packages or conditions that must be satisfied only when
variables take certain values. For example if a PCMCIA ISDN adapter is used the package
“pcmcia” has to be installed, too.

In order to perform these checks you may write small tests to check/<PACKAGE>.ext (also
called ext-script). The language consists of the following elements:

1. Keywords:

• Control Flow:
– if (expr) then statement else statement fi
– foreach var in set_var do statement done
– foreach var in set_var_1 ... set_var_n do statement done
– foreach var in var_n do statement done

• Dependencies:
– provides package version x.y.z

– depends on package version x1.y1 x2.y2.z2 x3.y3 ...

• Actions:
– warning "warning "
– error "error "
– fatal_error "fatal error "
– set var = value

– crypt (variable)
– stat (filename, res)
– fgrep (filename, regex)
– split (string, set_variable, character)

2. Data Types: strings, positive integers, version numbers

3. Logical Operations: <, ==, >, !=, !, &&, ||, =~, copy_pending, samenet, subnet

19

1 Documentation for Developers

Data Types

Concerning data types please note that variables, based on the associated regular expression
are permanently assigned to a data type:

• Variables, starting with type “NUM” are numeric and contain positive integers

• Variables representing an N-variable for any kind of array are numeric as well

• all other variables are treated as strings

This means, among other things, that a variable of type ENUMERIC can not be used as an
index when accessing an array variable, even if you have checked at first that it is not empty.
The following code thus does not work as expected:

TEST should be a variable of type ENUMERIC
if (test != "")
then

Error: You can't use a non-numeric ID in a numeric
context. Check type of operand.
set i=my_array[test]
Error: You can't use a non-numeric ID in a numeric
context. Check type of operand.
set j=test+2

fi

A solution for this problem is offered by split (Page 27):

if (test != "")
then

all elemente of test_% are numeric
split(test, test_%, ' ', numeric)
OK
set i=my_array[test_%[1]]
OK
set j=test_%[1]+2

fi

Substitution of Strings and Variables

At various points strings are needed, such as when a Warning (Page 23) should be issued. In
some cases described in this documentation, such a string is scanned for variables. If found,
these are replaced by their contents or other attributes. This replacement is called variable
substitution.

This will be illustrated by an example. Assume this configuration:

config/base.txt
HOSTNAME='fli4l'
config/dns_dhcp.txt
HOST_N='1' # Number of hosts
HOST_1_NAME='client'
HOST_1_IP4='192.168.1.1'

20

1 Documentation for Developers

Then the character strings are rewritten as follows, if variable substitution is active in this
context:

"My router is called $HOSTNAME"
--> "My router is called fli4l"
"HOSTNAME is part of the package %{HOSTNAME}"
--> "HOSTNAME is part of the package base"
"@HOST_N is $HOST_N"
--> " # Number of hosts is 1"

As you can see, there are basically three options for replacement:

• $<Name> resp. ${<Name>}: Replaces the variable name with the contents of the variable.
This is the most common form of replacement. The name must be enclosed in {...}
if in the string it is directly followed by a char that may be a valid part of a variable
name (a letter, a digit, or an underscore). In all other cases, the use of curly brackets is
possible, but not mandatory.

• %<Name> resp. %{<Name>}: Replaces the variable name with the name of the package in
which the variable is defined. This does not work with variables assigned in the script
via set (Page 23) or with counting variables of a foreach-loop (Page 29) since such
variables do not have a package and their syntax is different.

• @<Name> resp. @{<Name>}: Replaces the variable name with the comment noted in the
configuration after the variable. Again, this does not make sense for variables defined by
the script.

Hint: Elements of array variables can not be integrated into strings this way, because there
is no possibility to provide an index.

In general, only constants can be used for variable substitution, strings that come from a
variable remain unchanged. An example will make this clear - assume the following configura-
tion:

HOSTNAME='fli4l'
TEST='${HOSTNAME}'

This code:

warning "${TEST}"

leads to the following output:

Warning: ${HOSTNAME}

It will not display:

Warning: fli4l

In the following sections it will be explicitly noted under which conditions strings are subject
of variable substitution.

21

1 Documentation for Developers

Definition of a Service with an associated Version Number: provides

For instance, an OPT may declare that it provides a Printer service or a Webserver service.
Only one package can provide a certain service. This prevents i.e. that two web servers are
installed in parallel, which is not possible for obvious reasons, since the two servers would both
register port 80. In addition, the current version of the service is provided so that updates can
be triggered. The version number consists of two or three numbers separated by dots, such as
“4.0” or “2.1.23”.

Services typically originate from OPTs, not from packages. For example the package “tools”
has a number of programs that each have their own provides statement defined if activated
by OPT_...='yes'.

The syntax is as follows:

provides <Name> version <Version>

Example from package “easycron”:

provides cron version 3.10.0

The version number should be incemented by the OPT-developer in the third component,
if only functional enhancements have been made and the OPT’s interface is still. The version
number should be increased in the first or second component when the interface has changed
in any incompatible way (eg. due to variable renaming, path changes, missing or renamed
utilities, etc.).

Definition of a Dependency to a Service with a specific Version: depends

If another service is needed to provide the own function (eg. a web server) this dependency
to a specific version may be defined here. The version can be given with two (i.e. “2.1”) or
three numbers (i.e. “2.1.11”) while the two-number version accepts all versions starting with
this number and the three-number version only accepting just the specified one. A list of
version numbers may also be specified if multiple versions of the service are compatible with
the package.
The syntax is as follows:

depends on <Name> version <Version>+

An example: Package “server” contains:

provides server version 1.0.1

A Package “client” with the following depends-instruction is given:2

depends on server version 1.0 # OK, '1.0' matches '1.0.1'
depends on server version 1.0.1 # OK, '1.0.1' matches '1.0.1'
depends on server version 1.0.2 # Error, '1.0.2' does not match with '1.0.1'
depends on server version 1.1 # Error, '1.1' does not match with '1.0.1'
depends on server version 1.0 1.1 # OK, '1.0' matches '1.0.1'
depends on server version 1.0.2 1.1 # Error, neither '1.0.2' nor '1.1' are matching

'1.0.1'
2Of course only one at a time!

22

1 Documentation for Developers

Communication with the User: warning, error, fatal_error

Using these three functions users may be warned, signalized an errors or stop the test imme-
diately. The syntax is as follows:

• warning "text"

• error "text"

• fatal_error "text"

All strings passed to these funtions are subject of variable substitution (Page 20).

Assignments

If for any reason a temporary variable is required it can be created by “set var [= value]”.
The variable can not be a configuration variable! 3 If you omit the “= value” part the variable
is simply set to “yes” so it may be tested in an if-statement. If an assignment part is given,
anything may be specified after the equal sign: normal variables, indexed variables, numbers,
strings and version numbers.

Please note that by the assignment also the type of the temporary variable is defined. If
a number is assigned mkfli4l “remembers” that the variable contains a number and later on
allows calculations with it. Trying to do calculations with variables of other types will fail.
Example:

set i=1 # OK, i is a numeric variable
set j=i+1 # OK, j is a numeric variable and contains the value 2
set i="1" # OK, i now is a string variable
set j=i+1 # Error "You can't use a non-numeric ID in a numeric

context. Check type of operand."
--> no calculations with strings!

You may also define temporary arrays (see below). Example:

set prim_%[1]=2
set prim_%[2]=3
set prim_%[3]=5
warning "${prim_n}"

The number of array elements is kept by mkfli4l in the variable prim_n. The code above
hence leads to the following output:

Warning: 3

If the right side of an assignment is a string constant, it is subject of variable substitution
(Page 20) at the time of assignment. The following example demonstrates this. The code:

3This is a desired restriction: Check scripts are not able to change the user configuration.

23

1 Documentation for Developers

set s="a"
set v1="$s" # v1="a"
set s="b"
set v2="$s" # v2="b"
if (v1 == v2)
then
warning "equal"

else
warning "not equal"

fi

will output “not equal”, because the variables v1 and v2 replace the content of the variable
s already at the time of assignment.

Hint: A variable set in a script is visible while processing further scripts – currently there
exists no such thing as local variables. Since the order of processing scripts of different packages
is not defined, you should never rely on any variable having values defined by another package.

Arrays

If you want to access elements of a %-variable (of an array) you have to use the original name
of the variable like mentioned in the file check/<PACKAGE>.txt and add an index for each “%”
sign by using “[Index]”.

Example: If you want to access the elements of variable PF_USR_CHAIN_%_RULE_% you need
two indices because the variable has two “%” signs. All elements may be printed for example
using the following code (the foreach-loop is exlained in see below (Page 29)):

foreach i in pf_usr_chain_n
do

only one index needed, only one '%' in the variable's name
set j_n=pf_usr_chain_%_rule_n[i]
Attention: a
foreach j in pf_usr_chain_%_rule_n[i]
is not possible, hence the use of j_n!
foreach j in j_n
do

two indices needed, two '%' in the variable's name
set rule=pf_usr_chain_%_rule_%[i][j]
warning "Rule $i/$j: ${rule}"

done
done

With this sample configuration

PF_USR_CHAIN_N='2'
PF_USR_CHAIN_1_NAME='usr-chain_a'
PF_USR_CHAIN_1_RULE_N='2'
PF_USR_CHAIN_1_RULE_1='ACCEPT'
PF_USR_CHAIN_1_RULE_2='REJECT'
PF_USR_CHAIN_2_NAME='usr-chain_b'
PF_USR_CHAIN_2_RULE_N='1'
PF_USR_CHAIN_2_RULE_1='DROP'

24

1 Documentation for Developers

the following output is printed:

Warning: Rule 1/1: ACCEPT
Warning: Rule 1/2: REJECT
Warning: Rule 2/1: DROP

Alternatively, you can iterate directly over all values of the array (but the exact indices of
the entries are not always known, because this is not required):

foreach rule in pf_usr_chain_%_rule_%
do

warning "Rule %{rule}='${rule}'"
done

That produces the following output with the sample configuration from above:

Warning: Rule PF_USR_CHAIN_1_RULE_1='ACCEPT'
Warning: Rule PF_USR_CHAIN_1_RULE_2='REJECT'
Warning: Rule PF_USR_CHAIN_2_RULE_1='DROP'

The second example nicely shows the meaning of the %<Name>-syntax: Within the string
%rule is substitued by the name of the variable in question (for example PF_USR_CHAIN_1_RULE_1),
while $rule is substituted by its content (i.e. ACCEPT).

Encryption of Passwords: crypt

Some variables contain passswords that should not be noted in plain text in rc.cfg. These
variables can be encrypted by the use of crypt and are transferred to a format also needed on
the router. Use this like here:

crypt (<Variable>)

The crypt function is the only point at which a configuration variable can be changed.

Querying File Properties: stat

stat is used to query file properties. At the moment only file size can be accessed. If checking
for files under the current configuration directory you may use the internal variable config_dir.
The Syntax:

stat (<file name>, <key>)

The command looks like this (the parameters used are only examples):

foreach i in openvpn_%_secret
do

stat("${config_dir}/etc/openvpn/$i.secret", keyfile)
if (keyfile_res != "OK")
then

error "OpenVPN: missing secretfile <config>/etc/openvpn/$i.secret"
fi

done

25

1 Documentation for Developers

The example checks whether a file exists in the current configuration directory.
If OPENVPN_1_SECRET='test' is set in the configuration file, the loop in the first run checks
for the existence of the file etc/openvpn/test.secret in the current configuration directory.

After the call two variables are defined:

• <Key>_res: Result of the system call stat() (“OK”, if system call was successful, else the
error message of the system call)

• <Key>_size: File size

It may for example look like this:

stat ("unix/Makefile", test)
if ("$test_res" == "OK")
then

warning "test_size = $test_size"
else

error "Error '$test_res' while trying to get size of 'unix/Makefile'"
fi

A file name passed as a string constant is subject of variable substitution (Page 20).

Search files: fgrep

If you wish to search a file via “grep”4 you may use the fgrep command. The syntax is:

fgrep (<File name>, <RegEx>)

If the file <File name> does not exist mkfli4l will abort with a fatal error! If it is not sure
if the file exists, test this before with stat. After calling fgrep the search result is present in
an array called FGREP_MATCH_%, with its index x as usual ranging from one to FGREP_MATCH_N.
FGREP_MATCH_1 points to the whole range of the line the regular expression has matched, while
FGREP_MATCH_2 to FGREP_MATCH_N contain the n-1 th part in brackets.
A first example will illustrate the use. The file opt/etc/shells contains the line:

/bin/sh

The following code

fgrep("opt/etc/shells", "^/(.)(.*)/")
foreach v in FGREP_MATCH_%
do
warning "%v='$v'"

done

produces this output:

Warning: FGREP_MATCH_1='/bin/'
Warning: FGREP_MATCH_2='b'
Warning: FGREP_MATCH_3='in'

4“grep” is a common command on *nix-like OSes for filtering text streams.

26

1 Documentation for Developers

The RegEx has (only) matched with “/bin/” (only this part of the line is contained in the
variable FGREP_MATCH_1). The first bracketed part in the expression only matches the first char
after the first “/”, this is why only “b” is contained in FGREP_MATCH_2. The second bracketed
part contains the rest after “b” up to the last “/”, hence “in” is noted in variable FGREP_MATCH_3.

The following second example demonstrates an usual use of fgrep taken from check/base.ext.
It will be tested if all tmpl:-references given in PF_FORWARD_x are really present.

foreach n in pf_forward_n
do
set rule=pf_forward_%[n]
if (rule =~ "tmpl:([^[:space:]]+)")
then
foreach m in match_%
do
stat("$config_dir/etc/fwrules.tmpl/$m", tmplfile)
if(tmplfile_res == "OK")
then

add_to_opt "etc/fwrules.tmpl/$m"
else
stat("opt/etc/fwrules.tmpl/$m", tmplfile)
if(tmplfile_res == "OK")
then
add_to_opt "etc/fwrules.tmpl/$m"

else
fgrep("opt/etc/fwrules.tmpl/templates", "^$m[[:space:]]+")
if (fgrep_match_n == 0)
then
error "Can't find tmpl:$m for PF_FORWARD_${n}='$rule'!"

fi
fi

fi
done

fi
done

Both a filename value as well as a regular expression passed as a string constant are subject
to variable substitution (Page 20).

Splitting Parameters: split

Often variables can be assigned with several parameters, which then have to be split apart
again in the startup scripts. If it is desired to split these previously and perform tests on them
split can be used. The syntax is like this:

split (<String>, <Array>, <Separator>)

The string can be specified by a variable or directly as a constant. mkfli4l splits it where a
separator is found and generates an element of the array for each part. You may iterate over
these elements later on and perform tests. If nothing is found between two separators an array
element with an empty string as its value is created. The exception is “ ”: Here all spaces are
deleted and no empty variable is created.

27

1 Documentation for Developers

If the elements generated by such a split should be in a numeric context (e.g. as indices) this
has to be specified when calling split. This is done by the additional attribute “numeric”.
Such a call looks as follows:

split (<String>, <Array>, <Separator>, numeric)

An example:

set bar="1.2.3.4"
split (bar, tmp_%, '.', numeric)
foreach i in tmp_%
do

warning "%i = $i"
done

the output looks like this:

Warning: TMP_1 = 1
Warning: TMP_2 = 2
Warning: TMP_3 = 3
Warning: TMP_4 = 4

Hint: If using the “numeric” variant mkfli4l will not check the generated string parts for
really being numeric! If you use such a non-numeric construct later in a numeric context (i.e.
in an addtion) mkfli4l will raise a fatal error. Example:

set bar="a.b.c.d"
split (bar, tmp_%, '.', numeric)
Error: invalid number 'a'
set i=tmp_%[1]+1

A string constant passed to split in the first parameter is subject of variable substitution
(Page 20).

Adding Files to the Archives: add_to_opt

The function add_to_opt can add additional files to the Opt- or RootFS-Archives. All files
under opt/ or from the configuration directory may be chosen. There is no limitation to only
files from a specific package. If a file is found under opt/ as well as in the configuration direc-
tory, add_to_opt will prefer the latter. The function add_to_opt is typically used if complex
logical rules decide if and what files have to be included in the archives.

The syntax looks like this:

add_to_opt <File> [<Flags>]

Flags are optional. The defaults from table 1.2 are used if no flags are given.
See an example from the package “sshd”:

28

1 Documentation for Developers

if (opt_sshd)
then

foreach pkf in sshd_public_keyfile_%
do
stat("$config_dir/etc/ssh/$pkf", publickeyfile)
if(publickeyfile_res == "OK")
then

add_to_opt "etc/ssh/$pkf" "mode=400 flags=utxt"
else

error "sshd: missing public keyfile %pkf=$pkf"
fi

done
fi

stat (Page 25) at first checks for the file existing in the configuration directory. If it is, it
will be included in the archive, if not, mkfli4l will abort with an error message.

Hint: Also for add_to_opt mkfli4l will first check (Page 11) if the file to be copied can be
found in the configuration directory.

Filenames as well flags passed as string constants are subject of variable substitution (Page 20).

Control Flow

if (expr)
then

statement
else

statement
fi

A classic case distinction, as we know it. If the condition is true, the then part is executed,
if the condition is wrong the else part.
If you want to run tests on array variables, you have to test every single variable. The

foreach loop in two variants for this.

1. Iterate over array variables:

foreach <control variable> in <array variable>
do

<instruction>
done

foreach <control variable> in <array variable-1> <array variable-2> ...
do

<instruction>
done

This loop iterates over all of the specified array variables, each starting with the first
to the last element, the number of elements in this array is taken from the N-variable

29

1 Documentation for Developers

associated with this array. The control variable takes the values of the respective array
variables. It should be noted that when processing optional array variables that are not
present in the configuration, an empty element is generated. You may have to take this
into account in the script, for example like this:

foreach i in template_var_opt_%
do

if (i != "")
then

warning "%i is present (%i='$i')"
else

warning "%i is undefined (empty)"
fi

done

As you also can see in the example, the name of the respective array variables can be
determined with the %<control variable> construction.
The instruction in the loop may be one of the above control elements or functions (if,
foreach, provides, depends, . . .).
If you want to access exactly one element of an array, you can address it using the syntax
<Array>[<Index>]. The index can be a normal variable, a numeric constant or again
an indexed array.

2. Iteration over N-variables:

foreach <control variable> in <N-variable>
do

<instruction>
done

This loop executes from 1 to the value that is given in the N-variable. You can use the
control variable to index array variables. So if you want to iterate over not only one but
more array variables at the same time all controlled by the same N-variable you take
this variant of the loop and use the control variable for indexing multiple array variables.
Example:

foreach i in host_n
do

set name=host_%_name[i]
set ip4=host_%_ip4[i]
warning "$i: name=$name ip4=$ip4"

done

The resulting content of the HOST_%_NAME- and HOST_%_IP4-arrays for this example:

Warning: 1: name=berry ip4=192.168.11.226
Warning: 2: name=fence ip4=192.168.11.254
Warning: 3: name=sandbox ip4=192.168.12.254

30

1 Documentation for Developers

Expressions

Expressions link values and operators to a new value. Such a value can be an normal variable,
an array element, or a constant (Number, string or version number). All string constants in
expressions are subject to variable substitution (Page 20).

Operators allow just about everything you could want from a programming language. A
test for the equality of two variables could look like this:

var1 == var2
"$var1" == "$var2"

It should be noted that the comparison is done depending on the type that was defined for
the variable in check/<PACKAGE>.txt. If one of the two variables is numeric (Page 20) the
comparison is made numeric-based, meaning that the strings are converted to numbers and
then compared. Otherwise, the comparison is done string-based; comparing "05" == "5" gives
the result “false”, a comparison "18" < "9" “true” due to the lexicographical string order: the
digit “1” precedes the digit “9” in the ASCII character set.

For the comparison of version numbers the construct numeric(version) is introduced, which
generates the numeric value of a version number for comparison purposes. Here applies:

numeric(version) := major * 10000 + minor * 1000 + sub

whereas “major” is the first component of the version number, “minor” the second and “sub”
the third. If “sub” is missing the term in the addition above is omitted (in other words “sub”
will be equalled to zero).

A complete list of all expressions can be found in table 1.3. “val” stands for any value of
any type, “number” for a numeric value and “string”for a string.

Table 1.3: Logical Epressions
Expression true if
id id == “yes”
val == val values of identical type are equal
val != val values of identical type are unequal
val == number numeric value of val == number
val != number numeric value of val != number
val ă number numeric value of val ă number
val ą number numeric value of val ą number
val == version numeric(val) == numeric(version)
val ă version numeric(val) ă numeric(version)
val ą version numeric(val) ą numeric(version)
val =~ string regular expression in string matches val
(expr) Expression in brackets is true
expr && expr both expressions are true
expr || expr at least one of both expressions is true
copy_pending(id) see description
samenet (string1, string2) string1 describes the same net as string2
subnet (string1, string2) string1 describes a subnet of string2

31

1 Documentation for Developers

Match-Operator

With the match operator =~ you can check whether a regular expression matches the value of a
variable. Furthermore, one can also use the operator to extract subexpressions from a variable.
After successfully applying a regular expression on a variable the array MATCH_% contains the
parts found. May look like this:

set foo="foobar12"
if (foo =~ "(foo)(bar)([0-9]*)")
then

foreach i in match_%
do

warning "match %i: $i"
done

fi

Calling mkfli4l then would lead to this output:

Warning: match MATCH_1: foo
Warning: match MATCH_2: bar
Warning: match MATCH_3: 12

When using =~ you may take all existing regular expressions into account. If you i.e. want
to check whether a PCMCIA Ethernet driver is selected without OPT_PCMCIA being set to “yes”,
it might look like this:

if (!opt_pcmcia)
then

foreach i in net_drv_%
do

if (i =~ "^(RE:PCMCIA_NET_DRV)$")
then

error "If you want to use ..."
fi

done
fi

As demonstrated in the example, it is important to anchor the regular expression with ˆ
and $ if intending to apply the expression on the complete variable. Otherwise, the match-
expression already returns “true” if only a part of the variable is covered by the regular ex-
pression, which is certainly not desired in this case.

Check if a File has been copied depending on the Value of a Variable: copy_pending

With the information gained during the checking process the function copy_pending tests
if a file has been copied depending on the value of a variable or not. This can be used i.e.
in order to test whether the driver specified by the user really exists and has been copied.
copy_pending accepts the name to be tested in the form of a variable or a string. 5 In order
to accomplish this copy_pending checks whether

5As described before the string is subject of variable substitution, i.e via a foreach-loop (Page 29) and a
%<Name>-subsitution (Page 20) all elements of an array may be examined.

32

1 Documentation for Developers

• the variable is active (if it depends on an OPT it has to be set to “yes”),

• the variable was referenced in an opt/<PACKAGE>.txt-file and

• whether a file was copied dependant on the current value.

copy_pending will return “true” if it detects that during the last step no file was copied,
the copy process hence still is “pending”.

A small example of the use of all these functions can be found in check/base.ext:

foreach i in net_drv_%
do

if (copy_pending("%i"))
then

error "No network driver found for %i='$i', check config/base.txt"
fi

done

Alle elements of the array NET_DRV_% are detected for which no copy action has been done
because there is no corresponding entry existing in opt/base.txt.

Comparison of Network Addresses: samenet und subnet

For testing routes from time to time a test is needed whether two networks are identical or if
one is a subnet of the other. The two functions samenet and subnet are of help here.

samenet (netz1, netz2)

returns “true” if both nets are identical and

subnet (net1, net2)

returns “true” if “net1” is a subnet of “net2”.

Expanding the Kernel Command Line

If an OPT must pass other boot parameters to the kernel, in former times the variable
KERNEL_BOOT_OPTION had to be checked whether the required parameter was included, and
if necessary, a warning or error message had to be displayed. With the internal variable
KERNEL_BOOT_OPTION_EXT you may add a necessary but missing option directly in an ext-script.
An Example taken from check/base.ext:

if (powermanagement =~ "apm.*|none")
then

if (! kernel_boot_option =~ "acpi=off")
then

set kernel_boot_option_ext="${kernel_boot_option_ext} acpi=off"
fi

fi

This passes “acpi=off” to the kernel if no or “APM”-type power management is desired.

33

1 Documentation for Developers

1.3.8 Support for Different Kernel Version Lines
Different kernel version lines often differ in some details:

• changed drivers are provided, some are deleted, others are added

• module names simply differ

• module dependencies are different

• modules are stored in different locations

These differences are mostly handled automatically by mkfli4l. To describe the available
modules you can, on one hand expand tests dependant on the version (conditional regular ex-
pressions (Page 16)), or, on the other hand mkfli4l allows version dependant opt/<PACKAGE>.txt-
files. These are then named opt/<PACKAGE>_<Kernel-Version>.txt, where the components
of the kernel version are separated from each other by underscores. An example: the package
“base” contains these files in its opt-directory:

• base.txt

• base_3_16.txt

• base_3_17.txt

the first file (base.txt) is always considered. Both other files are only considered if the kernel
version is called “3.16(.*)” resp. “3.17(.*)”. As seen here, some parts of the version may be
omitted in file names, if a group of kernels should be addressed. If KERNEL_VERSION='3.16.41'
is given, the following files (if existing) are considered for the package <PACKAGE>:

• <PACKAGE>.txt

• <PACKAGE>_3.txt

• <PACKAGE>_3_16.txt

• <PACKAGE>_3_16_41.txt

1.3.9 Documentation
Documentation should be placed in the files

• doc/<LANGUAGE>/opt/<PACKAGE>.txt

• doc/<LANGUAGE>/opt/<PACKAGE>.html.

HTML-files may be splitted, meaning one for each OPT contained. Nevertheless a file
<PACKAGE>.html has to be created linking to the other files. Changes should be documented
in:

• changes/<PACKAGE>.txt

34

1 Documentation for Developers

The entire text documentation may not contain any tabs and has to have a line feed no later
than after 79 characters. This ensures that the documentation can also be read correctly with
an editor without automatic line feed.

Also a documentation in LATEX-format is possible, with HTML and PDF versions generated
from it. The documentation of fli4l may serve as an example here. A documentation framework
for required LATEX-macros can be found in the package “template”. A brief description is to
be found in the following subsections.

The fli4l documentation is currently available in the following languages: German (<LANGUAGE>
= “deutsch”), English (<LANGUAGE> = “english”) and French (<LANGUAGE> = “french”). It is
the package developer’s decision to document his package in any language. For the purposes
of clarity it is recommended to create a documentation in German and/or English (ideally in
both languages).

Prerequisites for Creating a LATEXDocumentation

To create a documentation from LATEX-sources the following requirements apply:

• Linux/OS X-Environment: For ease of production, a makefile exists to automate all other
calls (Cygwin should work too, but is not tested by the fli4l team)

• LaTeX2HTML for the HTML version

• of course LATEX (Recommended: “TeX Live” for Linux/OS X and “MiKTeX” for Mi-
crosoft Windows) the “pdftex”program and these TEX-packages:
– current KOMA-Skript (at least version 2)
– all packages necessary for pdftex
– unpacked documentation package for fli4l, it provides the necessary makefiles and

TEX-styles

File Names

The documentation files are named according to the following scheme:

<PACKAGE>_main.tex: This file contains the main part of the documentation. <PACKAGE>
stands for the name of the package to be described (in lowercase letters).

<PACKAGE>_appendix.tex: If further comments should be added to the package, they should
be placed there.

The files should be stored in the directory fli4l/<PACKAGE>/doc/<SPRACHE>/tex/<PACKAGE>.
For the package sshd this looks like here:

$ ls fli4l/doc/deutsch/tex/sshd/
Makefile sshd_appendix.tex sshd_main.tex sshd.tex

The Makefile is responsible for generating the documentation, the sshd.tex-file provides a
framework for the actual documentation and the appendix, which is located in the other two
files. See an example in the documentation of the package “template”.

35

1 Documentation for Developers

LATEX-Basics

LATEX is, just like HTML, “Tag-based” , only that the tags are called “commands” and have
this format: \command resp. \begin{environment} . . . \end{environment}
By the help of commands you should rather emphasize the importance of the text less the

display. It is therefore of advantage to use
\warning{Please␣do␣not...}

instead of
\emph{Please␣do␣not...}

.
Each command rsp. each environment may take some more parameters noted like this:

\command{parameter1}{parameter2}{parameterN}.
Some commands have optional parameters in square (instead of curly) brackets:

\command[optionalParameter]{parameter1} . . . Usually only one optional parameter is
used, in rare cases there may be more.
Individual paragraphs in the document are separated by blank lines. Within these para-

graphs LATEX itself takes care of line breaks and hyphenation.
The following characters have special meaning in LATEX and, if occuring in normal text,

must be masked prefixed by a \: # $ & _ % { }. “~” and “^” have to be written as follows:
\verb?~? \verb?^?
The main LATEX-commands are explained in the documentation of the package “template”.

1.3.10 File Formats
All text files (both documentation and scripts, which later reside on the router) should be
added to the package in DOS file format, with CR/LF instead of just LF at the end of a line.
This ensures that Windows users can read the documentation even with “notepad” and that
after changing a script under Windows everything still is executable on the router.

The scripts are converted to the required format during archive creation (see the description
of the flags in table 1.2).

1.3.11 Developer Documentation
If a program from the package defines a new interface that other programs can use, please store
the documentation for this interface in a separate documentation in doc/dev/<PACKAGE>.txt.

1.3.12 Client Programs
If a package also provides additional client programs, please store them in the directory
windows/ for Windows clients and in the directory unix/ for *nix and Linux clients.

1.3.13 Source Code
Customized programs and source code may be enclosed in the directory src/<PACKAGE>/. If
the programs should be built like the rest of the fi4l programs, please have a look at the
documentation of the “src”-package (Page ??) .

36

1 Documentation for Developers

1.3.14 More Files
All files, which will be copied to the router have to be stored under opt/etc/ and opt/files/.
Be under

• opt/etc/boot.d/ and opt/etc/rc.d/: scripts, that should be executed on system start

• opt/etc/rc0.d/: scripts, that should be executed on system shutdown

• opt/etc/ppp/: scripts, that should be executed on dialin or hangup

• opt/files/: executable programs and other files according to their positions in the
file system (for example the file opt/files/bin/busybox will later be situated in the
directory /bin on the router)

Scripts in opt/etc/boot.d/, opt/etc/rc.d/ and opt/etc/rc0.d/ have the following nam-
ing scheme:

rc<number>.<name>

The number defines the order of execution, the name gives a hint on what program/package
is processed by this script.

1.4 Creating Scripts for fli4l
The following is not a general introduction to shell scripts, everyone can read about this topic
on the Internet. It is only about the flil4-specific things. Further information is available in
the various *nix/Linux help pages. The following links may be used as entry points to this
topic:

• Introduction to shell scripts:
– http://linuxcommand.org/writing_shell_scripts.php

• Help pages online:
– http://linux.die.net/

– http://heapsort.de/man2web

– http://man.he.net/

– http://www.linuxcommand.org/superman_pages.php

1.4.1 Structure
In the *nix world, it is necessary to begin a script with the name of the interpreter, hence the
first line is:

#!/bin/sh

To easily recognize later what a script does and who created it, this line should now be
followed by a short header, like so:

37

http://linuxcommand.org/writing_shell_scripts.php
http://linux.die.net/
http://heapsort.de/man2web
http://man.he.net/
http://www.linuxcommand.org/superman_pages.php

1 Documentation for Developers

#--
/etc/rc.d/rc500.dummy - start my cool dummy server
#
Creation: 19.07.2001 Sheldon Cooper <sheldon@nerd.net>
Last Update: 11.11.2001 Howard Wolowitz <howard@nerd.net>
#--

Now for the real stuff to start...

1.4.2 Handling of Configuration Variables
Packages are configured via the file config/<PACKAGE>.txt. The active variables (Page 11)
contained there are transferred to the file rc.cfg during creation of the medium. This file
is processed during router boot before any rc-script (scripts under /etc/rc.d/) gets started.
The script then may access all configuration variables by reading the content of $<variable
name>.

If the values of configuration variables are needed after booting the may be extracted from
/etc/rc.cfg to which the configuration of the boot medium was written during the boot
process. If for example the value of the variable OPT_DNS should be processed in a script this
can be achieved as follows:

eval $(grep "^OPT_DNS=" /etc/rc.cfg)

This works efficiently also with multiple variables (with calling the grep program only once):

eval $(grep "^\(HOSTNAME\|DOMAIN_NAME\|OPT_DNS\|DNS_LISTEN_N\)=" /etc/rc.cfg)

1.4.3 Persistent Data Storage
Occasionally a package needs the possibility to store data persistent, surviving the reboot of
the router. For this purpose, the function map2persistent exists and can be called from a
script in /etc/rc.d/. It expects a variable that contains a path and a subdirectory. The idea
is that the variable is either describing an actual path – then this path is used because the user
explicitely has done so, or the string “auto” – then a subdirectory on a persistent medium is
created corresponding to the second parameter. The function returns the result in the variable
passed by name as the first parameter. An example will make this clear. VBOX_SPOOLPATH is a
variable, that ’contains a path or the string “auto” . The call

begin_script VBOX "Configuring vbox ..."
[...]
map2persistent VBOX_SPOOLPATH /spool
[...]
end_script

results in the variable VBOX_SPOOLPATH either not being changed at all (if it contains a path),
or being changed to /var/lib/persistent/vbox/spool (if it contains the string “auto”).
/var/lib/persistent then points6 to a directory on a non-volatile and writable storage
medium, <SCRIPT> is the name of the calling script in lowercase (this name is derived from

6 by the use of a so-called “bind”-mount

38

1 Documentation for Developers

the first argument of the begin_script-call (Page 39)). If no suitable medium should exist
(which may well be), /var/lib/persistent is a directory in the RAM disk.

Please note that the path returned by map2persistent is not created automatically – The
caller has to do that by himself (ie. by calling mkdir -p <path>).

The file /var/run/persistent.conf allows for checking if persistent data storage is possible.
Example:

. /var/run/persistent.conf
case $SAVETYPE in
persistent)

echo "persistent data storage is possible!"
;;

transient)
echo "persistent data storage is NOT possible!"
;;

esac

1.4.4 Debugging
For startup scripts it is often useful to run them in debug mode in a shell when you are in
need to determine where they fail. For this purpose, insert the following at the beginning and
at the end:

begin_script <OPT-Name> "start message"
<script code>
end_script

At the start and at the end of the script the specified text will now appear, preceded by
“finished”.

If you want to debug the scripts, you must do two things:

1. You have to set DEBUG_STARTUP (Page ??) to “yes”.

2. You have to activate debugging for the OPT. This is usually done by the entry

<OPT-Name>_DO_DEBUG='yes'

in the config file.7 What happens during runtime is now displayed in detail on screen.

Further Variables helpful for Debugging

DEBUG_ENABLE_CORE This variable allows the creation of “Core-Dumps”. If a program
crashes due to an error an image of the current state in the file system is stored which can
be used to analyse the problem. The core dumps are stored under /var/log/dumps/.

DEBUG_IP Activating this variable will log all calls of the program ip.

DEBUG_IPUP Setting this variable to “yes” will log all executed instructions of the ip-up-
and ip-down-scripts to syslog.

7Sometimes multiple start-scripts are used, which then have different names for their debug-variables. Have a
quick look at the scripts for clarification.

39

1 Documentation for Developers

LOG_BOOT_SEQ Setting this variable to “yes” will cause bootlogd to log all console output
during boot to the file /var/tmp/boot.log. This variable has “yes” as a default value.

DEBUG_KEEP_BOOTLOGD Normally bootlogd is terminated at the end of the boot pro-
cess. Activating this variable prevents this and thus allows for logging console output
during the whole runtime.

DEBUG_MDEV Setting this variable generates a logfile for the mdev-daemon, which is re-
sponsible for creating device nodes under /dev.

1.4.5 Hints
• It is always better to use curly brackets “{. . . }” instead of normal ones“(. . .)”. However,

care must be taken to ensure that after the opening bracket a space or a new line follows
before the next command and before the closing brackets a Semicolon or a new line. For
example:

{ echo "cpu"; echo "quit"; } | ...

is equal to:

{
echo "cpu"
echo "quit"

} | ...

• A script may be stopped by an “exit” at any time. This is deadly for start scripts
(opt/etc/boot.d/..., opt/etc/rc.d/...), stop-scripts (opt/etc/rc0.d/...) and
ip-up/ip-down-scripts (opt/etc/ppp/...) because the following scripts will not be run
as well. If in doubt, keep your fingers away.

• KISS – Keep it small and simple. You want to use Perl for scripting? The scripting
abilities of fli4l are not enough for you? Rethink your attitude! Is your OPT really
necessary? fli4l after all is “only” a router and a router should not really offer server
services.

• The error message “: not found” usually means the script is still in DOS format. Another
source of errors: the script is not executable. In both cases the opt/<PACKAGE>.txt file
should be checked whether it contains the correct options for “mode”, “gid”, “uid” and
Flags. If the script is created during boot, execute “chmod +x <script name>”.

• Use the path /tmp for temporary files. However, it is important to keep in mind that
there is little space there because it is situated in the rootfs-RAM disc! If more space is
needed, you have to create and mount your own ramdisk. Detailed informations on this
topic can be found in the section “RAM-Disks” of this documentation.

• In order to create temporary files with unique names you should always append the
current process-ID stored in the shell variable “$” to the file name. /tmp/<OPT-Name>.$$
hence is a perfect file name, /tmp/<OPT-Name> rather not (<OPT-Name> of course has to
be replaced by the according OPT-Name).

40

1 Documentation for Developers

1.5 Using The Packet Filter
1.5.1 Adding Own Chains And Rules
A set of routines is provided to manipulate the packet filter to add or delete so-called “chains”
and “rules”. A chain is a named list of ordered rules. There is a set of predefined chains
(PREROUTING, INPUT, FORWARD, OUTPUT, POSTROUTING), using this set of routines more chains
can be created as needed.

add_chain/add_nat_chain <chain>: Adds a chain to the “filter-” or “nat-” table.

flush_chain/flush_nat_chain <chain>: Deletes all rules from a chain of the “filter-” or
“nat-” table.

del_chain/del_nat_chain <chain>: Deletes a chain from the “filter-” or “nat-” table. Chains
must be empty prior to deleting and all references to them have to be deleted as well
before. Such a reference i.e. can be a JUMP-action with the chain defined as its target.

add_rule/ins_rule/del_rule: Adds rules to the end (add_rule) resp. at any place of a
chain (ins_rule) or deletes rules from a chain (del_rule). Use the syntax like here:

add_rule <table> <chain> <rule> <comment>
ins_rule <table> <chain> <rule> <position> <comment>
del_rule <table> <chain> <rule> <comment>

where the parameters have the following meaning:
table The table in which the chain is
chain The chain, in which the rule is to be inserted
rule The rule which is to be inserted, the format corresponds to that used in the config-

uration file
position The position at which the rule will be added (only in ins_rule)
comment A comment that appears with the rule when somebody looks at the packet

filter.

1.5.2 Integrating Into Existing Rules
fli4l configures the packet filter with a certain default rule set. If you want to add your own
rules, you will usually want to insert them after the default rule set. You will also need
to know what the action is desired by the user when dropping a packet. This information
can be obtained for FORWARD- and INPUT chains by calling two functions, get_defaults and
get_count. After calling

get_defaults <chain>

the following results are obtained:

drop: This variable contains the chain to which is branched when a packet is discarded.

reject: This variable contains the chain to which is branched when a packet is rejected.

41

1 Documentation for Developers

After calling

get_count <chain>

the variable res contains the number of rules in the chain <chain>. This position is of
importance because you can not simply use add_rule to add a rule at the end of the predefined
“filter”-chains INPUT, FORWARD and OUTPUT. This is because these chains are completed with a
default rule valid for all remaining packets depending on the content of the PF_<chain>_POLICY-
variable. Adding a rule after this last rule hence has no effect. The function get_count instead
allows to detect the position right in front of this last rule and to pass this position to the
ins_rule-function as a parameter <position> in order to add the rule in the place at the
end of the appropriate chain, but right in front of this last default rule targeting all remaining
packets.
An example from the script opt/etc/rc.d/rc390.dns_dhcp from the package “dns_dhcp”

shall make this clear:

case $OPT_DHCPRELAY in
yes)

begin_script DHCRELAY "starting dhcprelay ..."

idx=1
interfaces=""
while [$idx -le $DHCPRELAY_IF_N]
do

eval iface='$DHCPRELAY_IF_'$idx

get_count INPUT
ins_rule filter INPUT "prot:udp if:$iface:any 68 67 ACCEPT" \

$res "dhcprelay access"

interfaces=$interfaces' -i '$iface
idx=`expr $idx + 1`

done
dhcrelay $interfaces $DHCPRELAY_SERVER

end_script
;;

esac

Here you can see in the middle of the loop a call to get_count followed by a call to the
ins_rule function and, among other things, the res variable is passed as position parameter.

1.5.3 Extending The Packet Filter Tests
fli4l uses the syntax match:params in packet filter rules to add additional conditions for packet
matching (see mac:, limit:, length:, prot:, . . .). If you want to add tests you have to do
this as follows:

1. Define a suitable name. The first character of this name has to be lower case a-z. The
rest of the name can consist of any character or digit.

42

1 Documentation for Developers

If the packet filter test is used within IPv6 rules it is to make sure that the
name is not a valid IPv6 address component!

2. Creating a file opt/etc/rc.d/fwrules-<name>.ext. The content of this file is something
like this:

IPv4 extension is available
foo_p=yes

the actual IPv4 extension, adding matches to match_opt
do_foo()
{

param=$1
get_negation $param
match_opt="$match_opt -m foo $neg_opt --fooval $param"

}

IPv6 extension is available
foo6_p=yes

the actual IPv6 extension, adding matches to match_opt
do6_foo()
{

param=$1
get_negation6 $param
match_opt="$match_opt -m foo $neg_opt --fooval $param"

}

The packet filter test does not have to be implemented for both IPv4 and IPv6 (though
this would be preferred if reasonable for both layer 3 protocols).

3. Testing the extension:

$ cd opt/etc/rc.d
$ sh test-rules.sh 'foo:bar ACCEPT'
add_rule filter FORWARD 'foo:bar ACCEPT'
iptables -t filter -A FORWARD -m foo --fooval bar -s 0.0.0.0/0 \

-d 0.0.0.0/0 -m comment --comment foo:bar ACCEPT -j ACCEPT

4. Adding the extension and all other needed files (iptables components) to the archive
using the known mechanisms.

5. Allowing the extension in the configuration by extending of FW_GENERIC_MATCH and/or
FW_GENERIC_MATCH6 in an exp-file, for example:

+FW_GENERIC_MATCH(OPT_FOO) = 'foo:bar' : ''
+FW_GENERIC_MATCH6(OPT_FOO) = 'foo:bar' : ''

43

1 Documentation for Developers

1.6 CGI-Creation for Package httpd
1.6.1 General information about the web server
The web server used in fli4l is mini_httpd by ACME Labs. The sources can be found
at http://www.acme.com/software/mini_httpd/. However, a few changes in the current ver-
sion were made for fli4l. The modifications are located in the src package in the directory
src/fbr/buildroot/package/mini_httpd.

1.6.2 Script Names
The script names should be self-explanatory in order to be easy to distinguish from other
scripts and even similar names have to be avoided to differ from other OPTs.
To make scripts executable and convert DOS line breaks to UNIX ones a corresponding

entry has to be created in opt/<PACKAGE>.txt, see Table 1.2 (Page 9).

1.6.3 Menu Entries
To create an entry in the menu you have to enter it in the file /etc/httpd/menu. This
mechanism enables OPTs to change the menu during runtime. This should only be done using
the script /etc/httpd/menu because this will check for valid file formatting. New menu items
are inserted as follows:

httpd-menu.sh add [-p <priority>] <link> <name> [section] [realm]

Thus, an entry with the name <name> is inserted to the [section]. If [section] is omitted,
it will be inserted in the section “OPT-Packages” as default. <link> specifies the target of the
new link. <priority> specifies the priority of a menu item in its section. If not set, the default
priority used is 500. The priority should be a three digit number. The lower the priority, the
higher the link is placed in the section. If an entry should be placed as far down as possible
the priority to choose is e.g. 900. Entries with the same priority are sorted by the target of
the link. In [realm] the range is specified for which a logged-in user must have view rights so
the item is displayed for him. If [realm] is not specified, the menu item is always displayed.
For this, see also the section “User access rights” (Page 49).
Example:

httpd-menu.sh add "newfile.cgi" "Click here" "Tools" "tools"

This example creates a link named “Click here” with the target “newfile.cgi” in the section
“Tools” which will be created if not present.
The script may also delete entries from a menu:

httpd-menu.sh rem <link>

By executing this the entry containing the link <link> will be deleted.
Important: If several entries have the same link target file they will all be removed from

the menu.
Since sections can have priorities they can also be created manually. If a section was created

automatically when adding a menu entry it defaults to priority 500. The syntax for creating
sections is as follows:

44

http://www.acme.com/software/mini_httpd/

1 Documentation for Developers

httpd-menu.sh addsec <priority> <name>

<priority> should only be a three digit number.
In order to create meaningful priorities it is worthwhile to have a look at the file

/etc/httpd/menu of fli4l during runtime, priorities are placed in the second column.

A short description of the file format of the file menu follows for completeness. Those
satisfied with the function of httpd-menu.sh may skip this section. The file /etc/httpd/menu
is divided into four columns. The first column is a letter identifying the line as a heading or a
menu entry. The second column is the sort priority. The third column contains the target of
the link for entries and for headlines a hyphen, as this field has no meaning for headings. The
rest of the line is the text that will appear in the menu.

Headings use the letter “t”, a new menu section will be started then. Normal menu items
use the letters “e”. An example:

t 300 - My beautiful OPT
e 200 myopt1.cgi Do something beautiful
e 500 myopt1.cgi?more=yes Do something even more beautiful

When editing this file you have to be aware that the script httpd-menu.sh always stores
the file sorted. The individual sections are sorted and the entries in this section are sorted
too. The sorting algorithm can be stolen from httpd-menu.sh, however, it would be better to
expand the script itself with possible new functions, so that all menu-editing takes place at a
central location.

1.6.4 Construction of a CGI script
The headers

All web server scripts are simple shell scripts (interpreter as e.g. Perl, PHP, etc. are much too
big in filesize for fli4l). You should start with the mandatory script header (reference to the
interpreter, name, what does the script, author, license).

Helper Script cgi-helper

After the header you should include the helper script cgi-helper with the following call:

. /srv/www/include/cgi-helper

A space between the dot and the slash is important!
This script provides several helper functions that should greatly simplify the creation of

CGIs for fli4l. With the integration some standard tasks are performed, such as the parsing of
variables that were passed via forms or via the URL or loading of language and CSS files.
Here is a small function overview:

Contents of a CGI script

To ensure consistency in design and especially the compatibility with future versions of fli4l
it is highly recommended to use the functions of the cgi-helper script even if theoretically
everything in a CGI could be generated from scratch.
A simple CGI script might look like this:

45

1 Documentation for Developers

Table 1.4: Functions of the cgi-helper script
Name Function
check_rights Check for user access rights
http_header Creation of a standard HTTP header or a special header, e.g. for file download
show_html_header Creation of a complete page header (inc. HTTP header, headline and menu)
show_html_footer Creation of a footer for the HTML page
show_tab_header Creation of a content window with tabs
show_tab_footer Creation of a footer for the content window
show_error Creation of a box for error messages (background color: red)
show_warn Creation of a box for warning messages (background color: yellow)
show_info Creation of a box for information/ success messages (background color: green)

#!/bin/sh

Header (c) Author Date

get main helper functions
. /srv/www/include/cgi-helper

show_html_header "My first CGI"
echo ' <h2>Welcome</h2>'
echo ' <h3>This is a CGI script example</h3>'
show_html_footer

The Function show_html_header

The show_html_header function expects a string as a parameter. This string represents the
title of the generated page. It automatically generates the menu and includes associated
CSS and language files as long as they can be found in the directories /srv/www/css resp.
/srv/www/lang and have the same name (but of course a different extension) as the script.
An example:

/srv/www/admin/OpenVPN.cgi
/srv/www/css/OpenVPN.css
/srv/www/lang/OpenVPN.de

Both the use of language files and CSS files is optional. The files css/main.css and
lang/main.<lang> (where <lang> refers to the chosen language) are always included.

Additional parameters can be passed to the function show_html_header. A call with all
possible parameters might look like this:

show_html_header "Title" "refresh=$time;url=$url;cssfile=$cssfile;showmenu=no"

Any additional parameters must, as shown in the example, be enclosed with quotation marks
and separated by a semicolon. The syntax will not be checked! So it is necessary to pay close
attention to the exact parameter syntax.
Here is a brief overview of the function of the parameters:

• refresh=time: Time in seconds in which the page should be reloaded by the browser.

46

1 Documentation for Developers

• url=url: The URL which is reloaded on a refresh.

• cssfile=cssfile: Name of a CSS file if it differs from the name of the CGI.

• showmenu=no: By using this the display of the menu and the header can be suppressed.

Other Content Guidelines:

• Don’t write novels, use short desriptions :-)

• Use clean HTML (SelfHTML8 is a good starting point)

• Omit the bells and whistles (JavaScript is OK, if it does not interfere and support the
user, everything also has to work without JavaScript)

The Function show_html_footer

The function show_html_footer closes the block from the CGI script which was openend by
the function show_html_header.

The Function show_tab_header

For good looking content of your generated webpage generated by the CGI you may use the
cgi-helper function show_tab_header. It creates clickable “Tabs” in order to present your
page divided into multiple logically separated areas.
Parameters are always passed in pairs to the show_tab_header function. The first value

reflects the title of a tab, the second reflects the link. If the string “no” is passed as a link only
the title will be created and the tab is not clickable (and blue).
In the following example a “window” with the title “A great window” is generated. In the

window is “foo bar”:

show_tab_header "A great window" "no"
echo "foo"
echo "bar"
show_tab_footer

In this example, two clickable selection tabs are generated that pass the variable action to
the script, each with a different value.

show_tab_header "1st selection tab" "$myname?action=dothis" \
"2nd selection tab" "$myname?action=dothat"

echo "foo"
echo "bar"
show_tab_footer

Now the script can change the content of the variable FORM_action (see variable evaluation
below) and provide different content depending on the selection. For the clicked tab to appear
selected and not clickable anymore, a “no” would have to be passed to the function instead of
the link. But there is an easier way, if you hold to the convention in the following example:

8see http://de.selfhtml.org/

47

http://de.selfhtml.org/

1 Documentation for Developers

_opt_dothis="1st selection tab"
_opt_dothat="2nd selection tab"
show_tab_header "$_opt_dothis" "$myname?action=opt_dothis" \

"$_opt_dothat" "$myname?action=opt_dothat"
case $FORM_action in

opt_dothis) echo "foo" ;;
opt_dothat) echo "bar" ;;

esac
show_tab_footer

Hence, if a variable whose name equals the content of the variable action with a leading
underscore (_) is passed as the title then the tab will be displayed selected.

The Function show_tab_footer

The function show_tab_footer closes the block in the CGI script that was opened by the
function show_tab_header.

Multi-Language Capabilities

The helper script cgi-helper furthermore contains functions to create multi-langual CGI
scripts. You only have to use variables with a leading underscore (_) for all text output. This
variables have to be defined in the respective language files.
Example:
Let lang/opt.de contain:

_opt_dothis="Eine Ausgabe"

Let lang/opt.en contain:

_opt_dothis="An Output"

Let admin/opt.cgi contain:

...
echo $_opt_dothis
...

Form Evaluation

To process forms you have to know a few more things. Regardless of using the form’s GET or
POST methods, after including the cgi-helper script (which in turn calls the utility proccgi)
the parameters can be accessed by variables named FORM_<Parameter>. If i.e. the form field
had the name “input” the CGI script can access its content in the shell variable $FORM_input.
Further informations on the program proccgi can be found under http://www.fpx.de/fp/

Software/ProcCGI.html.

48

http://www.fpx.de/fp/Software/ProcCGI.html
http://www.fpx.de/fp/Software/ProcCGI.html

1 Documentation for Developers

User access rights: The Function check_rights

At the beginning of a CGI scripts the check_rights function has to be called in order to check
whether a user has sufficient rights to use the script. Do this like here:

check_rights <Section> <Action>

The CGI script will only be executed if the user, who is logged in at the moment

• has all rights (HTTPD_RIGHTS_x='all'), or

• has all rights for the current area (HTTPD_RIGHTS_x='<Bereich>:all'), or

• has the right to execute the function in the current area
(HTTPD_RIGHTS_x='<Bereich>:<Aktion>').

The Function show_error

This funtion displays an error message in a red box. It expects two parameters: a title and a
message. Example:

show_error "Error: No key" "No key was specified!"

The Function show_warn

This funtion displays a warning message in a yellow box. It expects two parameters: a title
and a message. Example:

show_info "Warning" "No connection at the moment!"

The Function show_info

This funtion displays an information or success message in a green box. It expects two param-
eters: a title and a message. Example:

show_info "Info" "Action successfully executed!"

The Helper Script cgi-helper-ip4

Right after cgi-helper the helper script cgi-helper-ip4 may be included by writing the
following line:

. /srv/www/include/cgi-helper-ip4

A space between the dot and the slash is important!
The script provides helper funtions for checking IPv4 addresses.

The Function ip4_isvalidaddr

This function checks if a valid IPv4 address was passed. Example:

if ip4_isvalidaddr ${FORM_inputip}
then

...
fi

49

1 Documentation for Developers

The Function ipv4_normalize

This function removes leading zeros from the passed IPv4 address. Example:

ip4_normalize ${FORM_inputip}
IP=$res
if [-n "$IP"]
then

...
fi

The Function ipv4_isindhcprange

This function checks whether the passed IPv4 address is ranged between the passed start and
end addresses. Example:

if ip4_isindhcprange $FORM_inputip $ip_start $ip_end
then

...
fi

1.6.5 Miscellaneous
This and that (yes, also important!):

• mini_httpd does not protect subdirectories with a password. Each directory must con-
tain a .htaccess file or a link to another .htaccess file.

• KISS - Keep it simple, stupid!

• This information may change at any time without prior notice!

1.6.6 Debugging
To ease debugging of a CGI script you may activate the debugging mode by sourcing the
cgi-helper script. Set the variable set_debug to “yes” in order to do so. This will create a file
debug.log which may be loaded down with the URL http://<fli4l-Host>/admin/debug.log.
It contains all calls of the CGI script. The variable set_debug is not a global one, it has to be
set anew for each CGI in question. Example:

set_debug="yes"
. /srv/www/include/cgi-helper

Furthermore, cURL9 is ideal for troubleshooting, especially if the HTTP headers are not
assembled correctly or the browser displays only blank pages. Also, the caching behavior of
modern Web browser is obstructive when troubleshooting.

Example: Get a dump of the HTTP-Header with ("‘dump"’, -D) and the normal output of
the CGI admin/my.cgi. The “user” (-u) name here shall be “admin”.

curl -D - http://fli4l/admin/my.cgi -u admin
9see http://de.wikipedia.org/wiki/CURL

50

http://de.wikipedia.org/wiki/CURL

1 Documentation for Developers

1.7 Boot, Reboot, Dialin And Hangup Under fli4l
1.7.1 Boot Concept
FLI4L 2.0 should offer a clean install on a hard disk or a CompactFlash (TM) media, but also
an installation on a Zip medium or the creation of a bootable CD-ROM should be possible.
In addition, the hard drive version should not be fundamentally different from the one on an
installation disk10.

These requirements have been implemented by making it possible to move the files of the
opt.img archive from the previous RAM disk to another medium, be it a partition on a hard
disk or a CF medium. This second volume is mounted to /opt and only symbolic links are
created from there to the rootfs. The resulting layout in the root file system then corresponds
to the one unpacked in the opt directory of the fli4l distribution with one exception – the
files prefix is not applicable. The file opt/etc/rc is then found directly under /etc/rc,
opt/files/bin/busybox under /bin/busybox. It can be ignored that these files may be only
links to a directory mounted read only as long as you do not want to modify them. If you
want to do this, you have to make the files writable before by using mk_writable (see below).

1.7.2 Start And Stop Scripts
Scripts intended to be executed on system boot are located in the directories opt/etc/boot.d/
and opt/etc/rc.d/ and will also get executed in this sequence. Furthermore, scripts executed
on shutdown are to be found in opt/etc/rc0.d/.
Important: These script must not contain an “exit”, because no separate process is created

for their execution. This command would lead to a premature ending of the boot process!

Start Scripts in opt/etc/boot.d/

Scripts located in this directory are executed at first. They mount the boot volume, parse the
config file rc.cfg located on the boot medium and unpack the opt archive. Depending on the
boot type (Page ??) these scripts are more or less complex and do the following things:

• Loading of hardware drivers (optional)

• Mount the boot volume (optional)

• Read the config file rc.cfg off the boot volume and write it to the file /etc/rc.cfg

• Mount the opt volume (optional)

• Unpack the opt archive (optional)

To make the scripts aware of the fli4l configuration, the configuration file /etc/rc.cfg is
also integrated in the Rootfs archive. The configuration variables in this file are parsed by the
start scripts in opt/etc/boot.d/. After mounting the boot volume /etc/rc.cfg is replaced
by the configuration file there, so that the the current configuration of the boot volume is
available for startup scripts in opt/etc/rc.d/ (see below). 11

10 Originally fli4l could be operated from a single floppy disk. This is no longer supported since it became too
big in file size.

11Normally, these two files are identical. Discrepancies are possible only if the configuration file on the boot

51

1 Documentation for Developers

Start Scripts in opt/etc/rc.d/

Commands that are executed at every start of the router can be stored in the directory
opt/etc/rc.d/. The following conventions apply:

1. Name conventions:

rc<three-digit number>.<Name of the OPT>

The scripts are started in ascending order of the numbers. If multiple scripts have the
same number assigned, they will be sorted alphabetically at that point. In case that the
start of a package is dependant on another one, this is the determined by the number.
Here’s a general outline which numbers should be used for which tasks:

Number Task
000-099 Base system (hardware, time zone, file system)
100-199 Kernel modules (drivers)
200-299 External connections (PPPoE, ISDN4Linux, PPtP)
300-399 Network (Routing, Interfaces, Packet filter)
400-499 Server (DHCP, HTTPD, Proxy, a.s.o.)
500-900 Any
900-997 Anything causing a dialin
998-999 reserved (please do not use!)

2. These scripts must contain all functions changing the RootFS, ie. creating of a directory
/var/log/lpd.

3. These scripts shall not contain writing to files that could be part of the opt archive,
because these files could be located on a volume mounted in read-only mode. If you
have to modify such a file, you have to make it writeable before by using the function
mk_writable (see below). This will create a writable copy of the file in the RootFS if
needed. If the file is already writable the call of mk_writable will have no effect.

Important: mk_writable has to be applied directly to files in RootFS, not indirectly
via the opt directory. If, for example, you want to modify /usr/local/bin/foo, the
function mk_writable has to be called with the argument /usr/local/bin/foo.

4. Before executing the actual commands these scripts have to check for the associated OPT
really being active. This is usually done by a simple if-case:

if ["$OPT_<OPT-Name>" = "yes"]
then

...
Start OPT here!
...

fi

volume was edited manually, for example to modify the configuration later on without the need to rebuild
the fli4l archives.

52

1 Documentation for Developers

5. For easier debugging the scripts should be enclosed in begin_script and end_script:

if ["$OPT_<OPT-Name>" = "yes"]
then

begin_script FOO "configuring foo ..."
...
end_script

fi

Debugging of start-scripts may be activated simply via FOO_DO_DEBUG='yes'.

6. All configuration variables are available to the scripts in direct. Explanations how to
access configuration variables in scripts can be found in the section “Working with con-
figuration variables” (Page 38).

7. The path /opt may not be used for storing OPT data. If in need of additional file
space you should enable the user to define a suitable location by using a configuration
variable. Depending on the type of data to be stored (persistent or transient data)
different default assignments should be used. A path under /var/run/ makes sense for
transient data, while for persistent data it is advised to use the function map2persistent
(Page 38) combined with a suitable configuration variable.

Stop Scripts in opt/etc/rc0.d/

Each machine must be shut down or restarted from time to time. It is perfectly possible that
you have to perform operations before the computer is shut down or restarted. To shut down
and restart the commands “halt” or “reboot” are used. These commands are also invoked
when the corresponding buttons in IMONC or the Web GUI are clicked.

All stop scripts can be found in the opt/etc/rc0.d/. The file names have to be created
using the same rules as for the scripts. They are as well executed in ascending order of numbers.

1.7.3 Helper Functions
/etc/boot.d/base-helper provides a number of different functions that can be used in Start-
and other scripts. They contian support for debugging, loading of kernel modules, or message
output. The functions are listed and explained in short below

Script Control

begin_script <Symbol> <Message>: Output of a message and activation of script debugging
by calling set -x, if <Symbol>_DO_DEBUG is set to “yes”.

end_script: Output of an end-message and deactivation of debugging if it was activated with
begin_script. For each begin_script call a corresponding end_script call has to exist
(and vice versa).

53

1 Documentation for Developers

Loading Of Kernel Modules

do_modprobe [-q] <Modul> <Parameter>*: Loads a kernel module including its parameters
(if needed) while resolving its module dependencies. The parameter “-q” prevents error
messages to be written to the console and to the boot log in case of failure. The function
returns 0 for success and another value in case of error. This enables you to create code
for handling failures while loading kernel modules:

if do_modprobe -q acpi-cpufreq
then

no CPU frequency scaling via ACPI
log_error "CPU frequency scaling via ACPI not available!"
[...]

else
log_info "CPU frequency scaling via ACPI activated."
[...]

fi

do_modrobe_if_exists [-q] <Module path> <Module> <Parameter>*:
Checks if the module /lib/modules/<Kernel-Version>/<Module path>/<Module> ex-
ists and, if so, invokes do_modprobe.

Important: The module has to exist exactly by this name, no aliases may be used. When
using an alias do_modprobe will be called immediately.

Messages And Error Handling

log_info <Message>: Logs a message to the console and to /bootmsg.txt. If no message is
passed as a parameter log_info reads the default input. The function always returns 0.

log_warn <Message>: Logs a warning message to the console and to /bootmsg.txt, using
the string WARN: as a prefix. If no message is passed as a parameter log_warn reads the
default input. The function always returns 0.

log_error <Message>: Logs an error message to the console and to /bootmsg.txt, using the
string ERR: as a prefix. If no message is passed as a parameter log_warn reads the
default input. The function always returns a non-zero value.

set_error <Message>: Output of an error message and setting of an internal error variable
which can be checked later via is_error.

is_error: Clears the internal error variable and returns true if it was set before via set_error.

Network Functions

translate_ip_net <Value> <Variable name> [<Result variable>]:
Replaces symbolic references in parameters. At the moment the following translations
are supported:
..*.*, none, default, pppoe will not be translated

54

1 Documentation for Developers

any will be replaced by 0.0.0.0/0
dynamic will be replaced by the IP address of the router which represents the Internet

connection
IP_NET_x will be replaced by the network found in the configuration
IP_NET_x_IPADDR will be replaced by the IP address found in the configuration
IP_ROUTE_x will be replaced by the routed network found in the configuration
@<Hostname> will be replaced by the Hosts IP address specified in the configuration
The result of the translation is stored in the variable whose name is passed in the third
parameter, if this parameter is missing, the result is stored in the variable res. The
variable name that is passed in the second parameter is used only for error messages if
the translation fails, to enable the caller to pass the source of the value to be translated.
In case of failure a message like

Unable to translate value '<Value>' contained in <Variable name>.

will be printed.
The return value is 0 in case of success, and unequal to zero in case of errors.

Miscellaneous

mk_writable <File>: Ensures that the given file is writable. If the file is located on a volume
mounted in read-only mode and is only linked to the file system via a symbolic link, a
local copy will be created which is then written to.

unique <List>: Removes duplicates from a list passed. The result is returned in the variable
list.

1.7.4 ttyI Devices
For ttyI devices (/dev/ttyI0 . . . /dev/ttyI15) used by the “modem emulation” of the ISDN
card a counter exists to avoid conflicts between multiple packages using these devices. For
this purpose the file /var/run/next_ttyI is created on router start which can be queried and
incremented by the OPTs. The following example script can query this value, increment it by
one and export it again for the next OPT.

ttydev_error=
ttydev=$(cat /var/run/next_ttyI)
if [$ttydev -le 16]
then # ttyI device available? yes

ttydev=$((ttydev + 1)) # ttyI device + 1
echo $ttydev >/var/run/next_ttyI # save it

else # ttyI device available? no
log_error "No ttyI device for <Name of your OPT> available!"
ttydev_error=true # set error for later use

fi

if [-z "$ttydev_error"] # start OPT only if next tty device

55

1 Documentation for Developers

then # was available to minimize error
... # messages and minimize the

risk of uncomplete boot
fi

1.7.5 Dialin And Hangup Scripts
General

After dialin resp. hangup of a dial-up connection the scripts placed in /etc/ppp/ are executed.
OPTs may store actions here that have to be executed after connecting resp. hanging up of a
connection. The name scheme for the files is as follows:

ip-up<three-digit number>.<OPT-Name>
ip-down<three-digit number>.<OPT-Name>

ip-up scripts will be excuted after establishing and ip-down scripts after hangig up of the
connection.
Important: In ip-down scripts no actions may be taken that lead to another dialin because

this would create a permanent-online condition not desired for users without a flatrate.

Important: Since no separate process is created for these scripts, they may not invoke
“exit” as well!
Hint: If a script wants to check for ip-up scripts being executed the variable ip_up_events

may be sourced from rc400 and up. If it is set to “yes” dialup-connections exist and ip-up
scripts will be executed. No dialup-connections are configured if it is set to “no” and ip-up
scripts will not get executed. There is an exeception to this rule: If an Ethernet router is
configured without dialup-connections but a default-Route (0.0.0.0/0) exists, ip-up scripts
will get executed only once at the end of the boot process. (And as well the ip-down scripts
on rooter shutdown.)

Variables

Due to the special call concept of the ip-up and ip-down scripts the following variables apply:

real_interface the real interface, ie. ppp0, ippp0, . . .
interface the IMOND interface, ie. pppoe, ippp0, . . .
tty terminal connected, may be empty!
speed connection speed, for ISDN ie. 64000
local own IP address
remote IP address of the Point-To-Point partner
is_default_route specifies if the current ip-up/ip-down is for the interface of

the default route (may be “yes” or “no”)

Default Route

As of version 2.1.0 ip-up/ip-down scripts are executed for all connections, not only for the
interface of the default route. To emulate the old behaviour you have to include the following

56

1 Documentation for Developers

in ip-up and ip-down scripts:

is a default-route-interface going up?
if ["$is_default_route" = "yes"]
then

actions to be taken
fi

Of course, the new behaviour can also be used for specific actions.

1.8 Package “template"’
To illustrate some of the things described before the fli4l distribution provides the package
“template"’. This explains by small examples how:

• a configuration files has to look like (config/template.txt)

• a check files is designed (check/template.txt)

• the extended checking mechanisms are used (check/template.ext)

• configuration variables are stored for later use
(opt/etc/rc.d/rc999.template)

• stored configuration variables are processed
(opt/files/usr/bin/template_show_config)

1.9 Structure of the Boot Medium
As of version 1.5 the program syslinux is used for booting. Its advantage is that a DOS-
compatible file system is available on the boot medium.
The boot medium contains the following files:

ldlinux.sys the “boot loader"’ syslinux
syslinux.cfg config file for syslinux
kernel Linux kernel
rootfs.img RootFS: programs needed for booting
opt.img Optional files: drivers and packages
rc.cfg config file containing the variables from all files in fli4l’s con-

figuration directory
boot.msg Text for the syslinux boot menu
boot_s.msg Text for the syslinux boot menu
boot_z.msg Text for the syslinux boot menu
hd.cfg config file to assign partitions

The script mkfli4l.sh (resp. mkfli4l.bat) at first generates the files opt.img, syslinux.cfg
and rc.cfg as well as rootfs.img. The files needed are determined by the program mkfli4l

57

1 Documentation for Developers

(in the unix- resp. windows-directory). The kernel and other packages are included in those
archives. The file rc.cfg can be found as well in the Opt-archive as on the boot medium.12

Subsequently, the files kernel, rootfs.img, opt.img and rc.cfg together with the syslinux-
files are copied to the disk.
During boot fli4l uses the script /etc/rc to evaluate the file rc.cfg and integrate the

compressed opt.img-archive into the RootFS-RAM-Disk (depending on the installation type
the files are extracted directly into the rootfs ramdisk or integrated via symbolic links). Then
the scripts in /etc/rc.d/ are run in alphanumeric order and thus the drivers are loaded and
all services get started.

1.10 Configuration Files
Here a short list of the files generated by fli4l “on-the-fly” at boot time.

1. Provider configuration
• etc/ppp/pap-secrets
• etc/ppp/chap-secrets

2. DNS configuration
• etc/resolv.conf
• etc/dnsmasq.conf
• etc/dnsmasq_dhcp.conf
• etc/resolv.dnsmasq

3. Hosts-File
• etc/hosts

4. imond-configuration
• etc/imond.conf

1.10.1 Provider Configuration
For the providers chosen User-ID and password are adapted in etc/ppp/pap-secrets.
Example for Provider Planet-Interkom:

Secrets for authentication using PAP
client server secret IP addresses
"anonymer" * "surfer" *

In this example “anonymer"’ is the USER-ID. As a remote server in principle anybody is
allowed (hence “*"’). “surfer"’ is the password for the Provider Planet-Interkom.

12The one in the Opt-archive is needed during early boot, because no boot volume is mounted at that time.

58

1 Documentation for Developers

1.10.2 DNS Configuration
You can use fli4l as a DNS server. Why this is meaningful (and for Windows PCs in the LAN
even mandatory) is explained in the documentation of the “base"’ package.

The resolver file etc/resolv.conf contains the domain name and the name server to use.
It has the following contents (where “domain.de"’ only is a placeholder for the value of the
configuration variable DOMAIN_NAME):

search domain.de
nameserver 127.0.0.1

The DNS server dnsmasq is configured by the file etc/dnsmasq.conf. It is automatically
generated during boot by processing the scripts rc001.base and rc370.dnsmasq and might
look like this:

user=dns
group=dns
resolv-file=/etc/resolv.dnsmasq
no-poll
no-negcache
bogus-priv
log-queries
domain-suffix=lan.fli4l
local=/lan.fli4l/
domain-needed
expand-hosts
filterwin2k
conf-file=/etc/dnsmasq_dhcp.conf

1.10.3 Hosts File
This file contains a mapping of host names to IP addresses. This assignment, however, is used
only locally on the flil4 and is not visible for other computers in the LAN. This file is actually
redundant if a local DNS server is started in addition.

1.10.4 imond Configuration
The file etc/imond.conf is constructed amongst others from the configuration variables CIRC_x_NAME,
CIRC_x_ROUTE, CIRC_x_CHARGEINT and CIRC_x_TIMES. It can consist of up to 32 lines (except for
comment lines). Each line has eight columns:

1. Range weekday to weekday

2. Range hour to hour

3. Device (ipppX or isdnX)

4. Circuit with default route: “yes"’/“no"’

5. Phone number

6. Name of the circuits

59

1 Documentation for Developers

7. Phone charges per minute in Euros

8. Charge interval in seconds

Here an example:

#day hour device defroute phone name charge ch-int
Mo-Fr 18-09 ippp0 yes 010280192306 Addcom 0.0248 60
Sa-Su 00-24 ippp0 yes 010280192306 Addcom 0.0248 60
Mo-Fr 09-18 ippp1 yes 019160 Compuserve 0.019 180
Mo-Fr 09-18 isdn2 no 0221xxxxxxx Firma 0.08 90
Mo-Fr 18-09 isdn2 no 0221xxxxxxx Firma 0.03 90
Sa-Su 00-24 isdn2 no 0221xxxxxxx Firma 0.03 90

Further explanations for Least-Cost-Routing can be found in the documentation of the
package “base"’.

1.10.5 The File /etc/.profile

The file /etc/.profile contains user-defined settings for the shell. To overwrite the default
settings you have to create a file etc/.profile below the configuration directory. You may
enter settings for the command prompt or abbreviations (so-called “Aliases"’) here.
Important: This file may not contain an exit!
Examples:

alias ll='ls -al'

1.10.6 Scripts in /etc/profile.d/

In the directory /etc/profile.d/ one may store scripts that will be executed when starting
a shell and thus may influence the shell’s environment. Typically OPT packages will place
scripts there to define special evironment variables necessary for the programs they contain.

If both scripts in /etc/profile.d/ and the file /etc/.profile exist, scripts in /etc/profile.d/
will be executed after the script /etc/.profile.

60

List of Figures

61

List of Tables

1.1 Parameters for mkfli4l . 6
1.2 Options for Files . 9
1.3 Logical Epressions . 31
1.4 Functions of the cgi-helper script . 46

62

Index

DEBUG_ENABLE_CORE, 39
DEBUG_IP, 39
DEBUG_IPUP, 39
DEBUG_KEEP_BOOTLOGD, 40
DEBUG_MDEV, 40

LOG_BOOT_SEQ, 39

63

	fli4l – Developer documentation
	Contents
	Documentation for Developers
	Common Rules
	Compiling Programs
	Module Concept
	mkfli4l
	Structure
	Configuration of Packages
	List of Files to Copy
	Checking Configuration Variables
	Own Definitions for Checking the Configuration Variables
	Extended Checks of the Configuration
	Support for Different Kernel Version Lines
	Documentation
	File Formats
	Developer Documentation
	Client Programs
	Source Code
	More Files

	Creating Scripts for fli4l
	Structure
	Handling of Configuration Variables
	Persistent Data Storage
	Debugging
	Hints

	Using The Packet Filter
	Adding Own Chains And Rules
	Integrating Into Existing Rules
	Extending The Packet Filter Tests

	CGI-Creation for Package httpd
	General information about the web server
	Script Names
	Menu Entries
	Construction of a CGI script
	Miscellaneous
	Debugging

	Boot, Reboot, Dialin And Hangup Under fli4l
	Boot Concept
	Start And Stop Scripts
	Helper Functions
	ttyI Devices
	Dialin And Hangup Scripts

	Package ``template"'
	Structure of the Boot Medium
	Configuration Files
	Provider Configuration
	DNS Configuration
	Hosts File
	imond Configuration
	The File /etc/.profile
	redScripts in /etc/profile.d/

	List of Figures
	List of Tables
	Index

