Package QOS
Version 3.10.19

Frank Meyer The fli4l-Team
email: frank@f1i4l .de email: team@f1i4]l.de

February 2, 2020

mailto:frank@fli4l.de
mailto:team@fli4l.de

Contents

1. Documentation Of Package QOS
1.1. QoS - Quality of Service
1.1.1. Configuration
1.1.2. Examples e

A. Appendix For Package QOS
List of Figures
List of Tables

Index

17

18

19

20

1. Documentation Of Package QOS

1.1. QoS - Quality of Service

By QoS the available bandwidth can be regulated and for example be distributed to several
ports, IP addresses and more.

A modem manages a packet queue where packets are stored that exceed the available band-
width. With DSL modems for example these queues are rather big. The advantage is a
constant usage of maximum bandwidth. If the router sends lesser packets for a short period
of time the modem has packets in the queue that it can send. Such a queue is a simple thing
sending packets first in first out - rather fair, isn’t it?

This is where QoS comes into play. QoS also manages a packet queue in the router itself
which makes it possible to decide which packets are to be sent at first and which to hold back.
If everything is configured the right way QoS sends packets at the speed the modem sends
them out not filling the modem queue at any time. This is like moving the modem queue into
the router.

Something general on speed units: QoS supports Mibit/s (mebibit/s) and Kibit/s (kibibit/s),
where applies 1Mibit = 1024Kibit.

1.1.1. Configuration
OPT_QOS Set this to ’yes’ to enable and 'no’ to disable OPT_QOS.

QOS_INTERNET_DEV_N Number of devices routing data to the Internet.

QOS_INTERNET_DEV_x List of devices that route data to the Internet. Examples:

QOS_INTERNET DEV_N='3’ device number

QOS_INTERNET DEV_1='ethX’ for cable and other ethernet connections
QOS_INTERNET_DEV_2="ppp0’ for DSL over PPPoE
QOS_INTERNET_DEV_3="ipppX’ for ISDN

The ISDN device for the first circuit should be named ippp0 the second ipppl. If channel
bundeling is activated for the first circuit the second channel of the first circuit is named
ipppl and the second circuit ippp2. QOS should only be used with ISDN if channel
bundeling is deactivated for the circuit used.

QOS_INTERNET_BAND_DOWN Maximum downstream bandwidth of the Internet con-
nection. See above: Something general on speed units (Page 3).

Hint: For time-critical jobs like preferring ACK packets it is necessary to limit the
bandwidth to the actual value. Else packets will be sorted correctly in the packet queue
but are withheld in the modem’s packet queue. It may be possible that bandwidth
declared by your provider is not in accordance with real conditions. It could be a little
less or a little more. At the end only trying helps here.

1. Documentation Of Package QOS

QOS_INTERNET_BAND_UP Maximum upstream bandwidth of the Internet connection.
See above: Something general on speed units (Page 3).

Also see hint at QOS_INTERNET_BAND_DOWN.

QOS_INTERNET_DEFAULT_DOWN Set the default class for packets coming from the
Internet here. All packets which are not classified by a filter will end here.

If no class is specified for which variable
QO0S_CLASS_x_DIRECTION='down'

is set specify:
QOS_INTERNET_DEFAULT_DOWN='O'

Example:

Two classes have been created and a filter puts all packets for a certain IP address into
the first one. All other packets should go to the second one. This must be set like this:

QOS_INTERNET_DEFAULT_DOWN='2'

Pay attention to set a class for QOS_INTERNET_DEFAULT_DOWN where its QOS_CLASS_x_-
DIRECTION variable contains the argument 'down’.

QOS_INTERNET_DEFAULT_UP Set the default class for packets going out to the Internet
here. All packets which are not classified by a filter will end here.

If no class is specified for which variable
QOS_CLASS_x_DIRECTION='up'

is set specify:
QOS_INTERNET DEFAULT UP='0"

This works in analog to QOS_INTERNET _DEFAULT_DOWN.
Pay attention to set a class for QOS_INTERNET_DEFAULT_UP where its QOS_CLASS_x_DIRECTION
variable contains the argument "up’.

QOS_CLASS_N Set the number of classes to be created.

QOS_CLASS_x_PARENT By this variable classes can be stacked. Set the number of the
parent class here. Bandwidth allocated to the parent class can be spread between the
subclasses. Maximum subclass layer depth is 8 whereas the interface itself is the first
layer which leaves a maximum of 7 layers to be configured.

If the class is no subclass write the following:

QOS_CLASS_x_PARENT='0"

1. Documentation Of Package QOS

It will get the maximum bandwidth set in QOS_CLASS_x_PORT_TYPE depending on its di-
rection (in- or outbound, see QOS_CLASS_x_PORT_TYPE)

Important: If this is not '0’ pay attention to define the parent class before (in numbering)

QOS_CLASS_x_MINBANDWIDTH Bandwidth to allocate to the classes. See above: Some-
thing general on speed units (Page 3).

Example: A class with a bandwidth limited to 128Kibit/s:

QOS_CLASS_1_MINBANDWIDTH='128Kibit/s'
QOS_CLASS_1_MAXBANDWIDTH='128Kibit/s'
QOS_CLASS_1_PARENT='0"

Three subclasses of our parent class above where QOS_CLASS_x_MINBANDWIDTH- and Q0S_-
CLASS_x_MAXBANDWIDTH settings look like this:

QOS_CLASS_2 PARENT='1"
QOS_CLASS_2_ MINBANDWIDTH='60Kibit/s'
QOS_CLASS_2 MAXBANDWIDTH='128Kibit/s'

QOS_CLASS_3_PARENT='1"
QOS_CLASS_3_MINBANDWIDTH='40Kibit/s'
QOS_CLASS_3_MAXBANDWIDTH='128Kibit/s'

QOS_CLASS_4 PARENT='1"
QOS_CLASS_4_MINBANDWIDTH='28Kibit/s'
QOS_CLASS_4_MAXBANDWIDTH='128Kibit/s'

All subclasses have the same (or no) priority (see QO0S_CLASS_x_PRIO). If traffic on all sub-
classes exceeds their QOS_CLASS_x_MINBANDWIDTH they all get QOS_CLASS_x_MINBANDWIDTH
allocated. If class 2 has only 20Kibit/s traffic there are 40Kibit/s “left”. This overrun
will be split in 40/28 ratio between class 3 and 4. Each class is limited to 128Kibit/s by
QOS_CLASS_x_MAXBANDWIDTH and because all classes are subclasses of a parent class limited
to 128Kibit/s the maximum bandwidth consumed is 128Kibit/s.

QOS_CLASS_x_MAXBANDWIDTH Maximum bandwidth to be allocated to the class.
There is no sense in entering a lower value than in QOS_CLASS_x_MINBANDWIDTH. If nothing is
set here this variable automatically will be set to the value of Q0S_CLASS_x_MINBANDWIDTH.
Such a class can’t use any free bandwidth resources.

See above: Something general on speed units (Page 3).

QOS_CLASS_x_DIRECTION This variable sets the direction the class belongs to. If up-
stream regulation is intended set:

QO0S_CLASS_x_DIRECTION='up'
for downstream in analog;:

QOS_CLASS_x_DIRECTION='down'

1. Documentation Of Package QOS

QOS_CLASS_x_PRIO Set the priority of the class here. The lower the number the higher
the priority. Values between 0 and 7 are allowed. Leaving this empty equals to setting
0’
Priorities are used to determine which class can use free bandwidth resources. Lets change
our example in QOS_CLASS_x_MINIMUMBANDWIDTH to reflect this: Nothing was changed for
the first class. Classes 2 to 4 get a priority:

QOS_CLASS_2_ PARENT='1'
QOS_CLASS_2_MINBANDWIDTH='60Kibit/s'
QOS_CLASS_2_ MAXBANDWIDTH='128Kibit/s'
QOS_CLASS_2_PRIO='1"

QOS_CLASS_3_MINBANDWIDTH='40Kibit/s'
QOS_CLASS_3_PARENT='1"
QOS_CLASS_3_MAXBANDWIDTH='128Kibit/s'
QOS_CLASS_3_PRID='1'

QOS_CLASS_4_PARENT='1"
QOS_CLASS_4_MINBANDWIDTH='28Kibit/s'
QOS_CLASS_4_ MAXBANDWIDTH='128Kibit/s'
QOS_CLASS_4_PRIO='2'

Like in the original example class 2 consumes only 20Kibit/s and leaves free bandwidth
of 40Kibit/s. Classes 3 and 4 both need more bandwidth than available. Class 3 now
has a higher priority than class 4 and may use the free bandwidth of 40Kibit/s.

If class 3 needs only 20Kibit/s of the free bandwidth of 40Kibit/s class 4 will get the
remaining 20Kibit /s.

Lets assume something different: Class 4 needs no bandwidth at all and class 2 and 3 both
need more than exists. So they both get the bandwidth set in QOS_CLASS_x_MINBANDWIDTH
and the remaining will be divided in 60/40 ratio between them because both classes have
the same priority.

As you see QO0S_CLASS_x_PRIO only has influence on how an enventual overrun in band-
width is spread.

QOS_CLASS_x_LABEL By using this optional variable a label for the class may be spec-
ified which will be used as the caption for the QOS-graphs created by an activated
OPT_RRDTOOL.

QOS_FILTER_N Set the number of filters desired here.

A quick note on filters: Arguments of the different variables are AND-linked, arguments
of the same variable are OR-linked. This means: If the same filter filters by an IP-
address and a port only packets will get selected and put in the queue which match both
conditions at a time.

Another example: Two ports (21 and 80) and an IP address are set in the same filter.
Since a packet can’t use two ports at a time the filter will match those packets that either
use port 21 and the named IP address or port 80 and the named IP address.

Important: The ordering of filters is essential!

1. Documentation Of Package QOS

An example: All traffic on port 456 for all clients should be queued to class A. In addition
all packets to a client with IP address 192.168.6.5 should be queued to class B, except
those on port 456. If the filter on the IP is created first all packets (those on port 456
too) will be queued to class B and the filter on port 456 doesn’t change this behavior.
The filter on port 456 has to be created before the one on the IP address 192.168.6.5 to
achieve our goals.

QOS_FILTER_x_CLASS This variable specifies the class a packet is queued in that matches
the given filter. If for example packets should be put in the queue specified by Q0S_-
CLASS_25_MINBANDWIDTH this should be done like this:

QOS_FILTER_x_CLASS='25"

By Q0S_CLASS_x_DIRECTION it is set if a class belongs to up- or downstream. If a filter
is set then queueing packets to an upstream class only upstream packets will be filtered
and queued to the class mentioned. Q0S_CLASS_x_DIRECTION defines the “direction ” of
filtering.

As of version 2.1 more than one target class can be set. If for example traffic on port
456 upstream and downstream is our target

QOS_FILTER_x_CLASS='4 25'

would be specified, if class 4 is the upstream class and 25 is the downstream one. It does
not make sense to specifiy more than one up- or downstream class so there never will be
more than two target classes.

QOS_FILTER_x_IP_INTERN Set IP addresses and IP ranges from internal networks here
which should be filtered. They have to be separated by spaces and can be combined in
any manner.

An example:
QOS_FILTER_x_IP_INTERN='192.168.6.0/24 192.168.5.7 192.168.5.12'

This filters all IP addresses that match 192.168.6.X and in addition IP 192.168.5.7 and
192.168.5.12.

This variable can be empty.

If this variable is used in conjunction with QOS_FILTER_x_IP_EXTERN only traffic between
IPs or IP ranges defined by QOS_FILTER_x_IP_INTERN and QOS_FILTER_x_IP_EXTERN will be
filtered.

Important: If filtering by Q0S_FILTER_z_OPTION for ACK, TOSMD, TOSMT, TOSMR
or TOSMC takes place and variable QOS_CLASS_xz_DIRECTION is of target class down’ this
variable will be ignored.

1. Documentation Of Package QOS

QOS_FILTER_x_IP_EXTERN Specify IP addresses and IP ranges from external networks
(being connected on QOS_INTERNET_DEV) here which should be filtered. They have to be
separated by spaces and can be combined in any manner. This works the same way as
QOS_FILTER_x_IP_INTERN.

This variable can be empty.
Important: If filtering by QOS_FILTER_z_OPTION for ACK, TOSMD, TOSMT, TOSMR

or TOSMC takes place and variable QOS_CLASS_xz_DIRECTION is of target class ’down’ this
variable will be ignored.

QOS_FILTER_x_PORT Ports and port ranges can be set here, separated by spaces and
combined in any manner. If this variable is empty traffic on all ports will be limited.

Filtering for a port range from 5000 up to 5099 would look like this:
QOS_FILTER_x_PORT='5000-5099’

Another example: If traffic on ports 20 to 21, 137 to 139 and port 80 should be filtered
to the same class this would look like this:

QOS_FILTER_x_PORT='20-21 137-139 80'

This variable can be empty.
Important:
« If filtering for ports QOS_FILTER_x_PORT_TYPE has to be set as well.

e Port ranges will be ignored if filtering for ACK, TOSMD, TOSMT, TOSMR. or
TOSMC takes place by the use of QOS_FILTER_x_OPTION.

QOS_FILTER_x_PORT_TYPE This variable is only valid and important in conjunction
with QOS_FILTER_x_PORT (it is ignored in other cases).

Ports in client mode are different from those in server mode. Specify here if a port is of
type server or client. Use PCs from your own net as a point of reference to decide what
to use. Possible settings:

QOS_FILTER_x_PORT_TYPE='client'
QOS_FILTER_x_PORT_TYPE='server'

As of version 2.1 a combination of those two arguments is also valid to put traffic from
the own net as well as traffic from the Internet into the same class on this port.

QOS_FILTER_x_PORT_TYPE='client server'

This equals to two similar filters once with QOS_FILTER_x_PORT_TYPE set to client and once
set to server.

QOS_FILTER_x_OPTION This variable activates additional properties for the filter. Only
one of the following arguments can be passed (a combination wouldn’t make sense in
the same filter). It is perfectly right and makes sense sometimes to set a filter for ACK
packets and a second filter for TOSMD packets to move their packets to the same target
class (see QOS_FILTER_x_CLASS).

1. Documentation Of Package QOS

ACK Acknowledgement packets.

A packet matching this option is sent as an acknowledgement to a data packet. If
i.e. a huge download is running a lot of data packets will come in and for each
of them an acknowledgement has to be sent to confirm it has reached you. If no
acknowledgement packets reach the download source it will wait for them before
sending the next chunk of data.

This is extremely important with asymetric connections (up- and downstream band-
widths differ) like used in most DSL lines. Those most likely have a small upstream
that tends to reach its maximum rather fast. If ACK packets are normally queued
this may end in the data server delaying its transaction to wait for ACK packets to
come in. This results in download rates lower than they could be.

So ACK packets have to bypass the “normal” packets in order to get to the data
server as fast as possible. How to combine this option in a meaningful way with a
class is explained in the examples.

ICMP Ping packets (Protocol ICMP)

Ping packets are used to measure time a packet takes to get from A to B. To take
influence on this value give ping packets a higher priority. This does not influence
ping times for online games.

IGMP IGMP-Pakete (Protokoll IGMP)
If using IP-TV it makes sense to filter and priorize IGMP packets.

TCPSMALL Small TCP Packets

By using this filter outgoing HTTP(s)-Requests can be filtered and priorized. A
combination with a destination port is possible and makes sense. Approx. size of
this TCP packets is 800 Byte max.

TCP TCP packets (Protocol TCP)

Only packets using protocol TCP are filtered.
UDP UDP packets (Protocol UDP)

Only packets using protocol UDP are filtered.
TOS* Type of Service

An application can set one of four TOS bits for each packet transmitted. This
specifies the intended handling for those packets. For example SSH can set TOS-
Minimum-Delay for sending in- and output and TOS-Maximum-Troughput for send-
ing files. Linux/Unix programs use these bits more often than Windows programs.
A firewall can set TOS bits for certain packets as well. In the end it all depends on
routers in the transport chain to honour TOS bits or not. Only TOS bits Minimum-
Delay and Maximum-Throughput are really important for fli4l.

TOSMD - TOS Minimum-Delay Used for services that need packets to be trans-
ferred without time delays. It is recommended to use this TOS bit for FTP
(control data), Telnet and SSH.

TOSMT - TOS Maximum-Troughput Used for services that need big amounts of
data to be transferred with high speed. It is recommended to use this TOS bit
for FTP data and WWW.

1. Documentation Of Package QOS

TOSMR - TOS Maximum-Reliability Used to ensure that data reaches its target
without being resent. Recommended use for this TOS bit is SNMP and DNS.

TOSMC - TOS Minimum-Cost Used to minimize costs for transferring data. Rec-
ommended use for this TOS bit is NNTP and SMTP.

DSCP* Differentiated Services Code Point

DSCP is a marking according to RFC 2474. This process has replaced TOS
marking mostly since 1998.

Filters on DSCP-classes can be configured as follows:

QOS_FILTER_x_OPTION='DSCPef'
QOS_FILTER_x_OPTION='DSCPcs3'

Please note that DSCP is in capital letters while the class is lower case.

The following classes can be used:
afl1-afl3, af21-af23, af31-af33, afd4l-af43, csl-cs7, ef und be (Standard)

1.1.2. Examples
How do we configure OPT_QoS in detail? This will be shown below for some use cases:
o Example 1: targets at spreading bandwidth between 3 clients.

o Example 2: targets at spreading bandwidth between 2 clients and on the clients between
one port and the rest of the traffic on this client.

o Example 3: targets at learning the general structures of working with QoS.

o Example 4: a configuration for preferring ACK packets in order to keep downstream high
even if upstream is overloaded.

Example 1

Spreading bandwidth between 3 clients.

Four classes are created (see QOS_CLASS_N) with the following speeds (see QOS_CLASS_x_-
MINBANDWIDTH / QOS_CLASS_x_MINBANDWIDTH). They are subclasses of class 0 (see QOS_CLASS_-
x_PARENT) and therefore are bound directly to the interface for “up” res. “down” (see QOS_-
CLASS_X_DIRECTION)

The fourth class is only for visitors and gets lesser bandwidth. By QOS_INTERNET_DEFAULT_-
DOWN="4" all traffic not filtered is queued to the forth “guest” class. Because we seldom have
visitors and the bandwidth is the same for the other 3 classes clients get 1/3 of the overall
bandwidth (256Kibit/s each).

This configuration is only a beginning. It has to be specified how traffic is regulated by the
classes.

We use two filters to assign traffic to the classes. We create 3 filters, one for each of
the 3 clients (see QOS_FILTER_N a.s.o.) and attach a filter to each class (see QOS_FILTER_x_-
CLASS). By specifying QOS_FILTER_x_IP_INTERN, QOS_FILTER_x_IP_INTERN, QOS_FILTER_x_PORT,
QOS_FILTER_x_PORT and QOS_FILTER_x_OPTION it can be defined what rules apply to each class.

Let’s call the interface 0, the 3 classes 1, 2 and 3 and the 3 filters F1, F2 and F3. The
scenario looks like this image 1.1.

10

1. Documentation Of Package QOS

(0]
N
F1 F2 F3

Figure 1.1.: Example 1

Configuration looks like this:
Three client PCs filtered by IP with 1/3 bandwidth each if visitors are absent:

OPT_QOS="'yes'

QOS_INTERNET _DEV_N='1"
QOS_INTERNET_DEV_1='pppO'
QOS_INTERNET_BAND_DOWN='768Kibit/s'
QOS_INTERNET_BAND_UP='128Kibit/s'
QOS_INTERNET _DEFAULT_DOWN='4'
QOS_INTERNET _DEFAULT UP='0"

QOS_CLASS_N='4"

QOS_CLASS_1_PARENT='0"
QOS_CLASS_1_MINBANDWIDTH='232Kibit/s'
QOS_CLASS_1_MAXBANDWIDTH='768Kibit/s'
QOS_CLASS_1_DIRECTION='down'
QOS_CLASS_1_PRIO=""

QOS_CLASS_2_PARENT='0"

QOS_CLASS_2_ MINBANDWIDTH='232Kibit/s'
QOS_CLASS_2_ MAXBANDWIDTH='768Kibit/s'
QOS_CLASS_2_DIRECTION='down'
QOS_CLASS_2_PRIO='"

QOS_CLASS_3_PARENT='0"
QOS_CLASS_3_MINBANDWIDTH='232Kibit/s'
QOS_CLASS_3_MAXBANDWIDTH='768Kibit/s'
QO0S_CLASS_3_DIRECTION='down'
QOS_CLASS_3_PRIO=""

QOS_CLASS_4_PARENT='0'
QOS_CLASS_4_MINBANDWIDTH='72Kibit/s'
QOS_CLASS_4_MAXBANDWIDTH='768Kibit/s'
QOS_CLASS_4 DIRECTION='down'
QOS_CLASS_4_PRIO=''

QOS_FILTER_N='3'
QOS_FILTER_1_CLASS='1"

QOS_FILTER_1_IP_INTERN='192.168.0.2"
QOS_FILTER_1_IP_EXTERN=''

11

1. Documentation Of Package QOS

QOS_FILTER_1_PORT='"
QOS_FILTER_1_PORT_TYPE=''
QOS_FILTER_1_OPTION=''

QOS_FILTER_2_CLASS='2'
QOS_FILTER_2_IP_INTERN='192.168.0.3"
QOS_FILTER_2_IP_EXTERN=''
QOS_FILTER_2_PORT=''
QOS_FILTER_2_PORT_TYPE=''
QOS_FILTER_2_OPTION=''

QOS_FILTER_3_CLASS='3"
QOS_FILTER_3_IP_INTERN='192.168.0.4"
QOS_FILTER_3_IP_EXTERN=''
QOS_FILTER_3_PORT='"
QOS_FILTER_3_PORT_TYPE=''
QOS_FILTER_3_OPTION=''

Option QOS_INTERNET_DEFAULT_UP is set to 0 because upstream should not be regulated.

Example 2

This example targets at spreading bandwidth between 2 client PCs and then those client
bandwidths between one port and the remaining traffic on the client.

We create 2 classes at first with the complete speed for each client and attach them directly
to the interface for “up” res. “down” (see example 1). No we create two additional classes for
the first client attached to the first class. These classes are created in the same way like the
first ones directly attached to the interface except for one difference: QOS_CLASS_x_PARENT is not
0 but the number of the parent class it is attached to. If this for example is Q0S_CLASS_1 the
classes’ QOS_CLASS_1 has to be set to 1. The same is applied for the second client PC. Attach
two subclasses to the class for the second PC. This could be done for an infinite number of
PCs if needed. Subclasses of a class can also be created in the amount needed.

This is our skeleton. Now filters have to be defined to assign traffic to the classes (see
example 1).

2 filters have to be created for each client. One filter on a port and one for the remaining
traffic of the client. Filter sequence is of essential importance here. First filter the port and
then the rest. The other way round the filter for the remaining traffic would assign all traffic
to its class (including the port traffic).

Let’s call the interface 0, the 6 classes 1, 2, 3, 4, 5, and 6 and the 4 filters F1, F2, F3 and
F4. The scenario looks like this image 1.1.

Configuration looks like this:

2 classes for 2 PCs getting 1/2 interface bandwidth each with 2 classes for a port getting
2/3 and the rest getting 1/3 of its parent class:

OPT_QOS="'yes'

QOS_INTERNET DEV_N='1'
QOS_INTERNET_DEV_1='pppO'
QOS_INTERNET _BAND_DOWN='768Kibit/s'
QOS_INTERNET BAND UP='128Kibit/s'
QOS_INTERNET DEFAULT DOWN='7"

12

1. Documentation Of Package QOS

N

i
F1 F2

1N
F3 F4

Figure 1.2.: Example 2

QOS_INTERNET DEFAULT UP='0"
QOS_CLASS_N='6"

QOS_CLASS_1_PARENT='0"
QOS_CLASS_1_MINBANDWIDTH='384Kibit/s'
QOS_CLASS_1_MAXBANDWIDTH='768Kibit/s'
QOS_CLASS_1_DIRECTION='down'
QOS_CLASS_1_PRIO='"

QOS_CLASS_2_ PARENT='0"
QOS_CLASS_2_ MINBANDWIDTH='384Kibit/s'
QOS_CLASS_2_ MAXBANDWIDTH='768Kibit/s'
QOS_CLASS_2_DIRECTION='down'
QOS_CLASS_2_PRIO=''

QOS_CLASS_3_PARENT='1"
QOS_CLASS_3_MINBANDWIDTH='256Kibit/s'
QOS_CLASS_3_MAXBANDWIDTH='768Kibit/s'
QOS_CLASS_3_DIRECTION='down'
QOS_CLASS_3_PRIO='"

QOS_CLASS_4_PARENT='1"

QOS_CLASS_4_ MINBANDWIDTH='128Kibit/s'
QOS_CLASS_4_MAXBANDWIDTH='768Kibit/s'
QOS_CLASS_4_DIRECTION='down'
QOS_CLASS_4_PRIO='"

QOS_CLASS_5_PARENT='2"
QOS_CLASS_5_MINBANDWIDTH='256Kibit/s'
QOS_CLASS_5_MAXBANDWIDTH='768Kibit/s'
QOS_CLASS_5_DIRECTION='down'
QOS_CLASS_5_PRIO=""

QOS_CLASS_6_PARENT='2"
QOS_CLASS_6_MINBANDWIDTH='128Kibit/s'
QOS_CLASS_6_MAXBANDWIDTH='768Kibit/s'
QOS_CLASS_6_DIRECTION='down'
QOS_CLASS_6_PRIO=""

13

1. Documentation Of Package QOS

QOS_FILTER_N='4'

QOS_FILTER_1_CLASS='3"
QOS_FILTER_1_IP_INTERN='192.168.0.2'
QOS_FILTER_1_IP_ EXTERN=''
QOS_FILTER_1_PORT='80"
QOS_FILTER_1_PORT_TYPE='client'
QOS_FILTER_1_OPTION=''

QOS_FILTER_2_CLASS='4'
QOS_FILTER_2_IP_INTERN='192.168.0.2"
QOS_FILTER_2_IP_EXTERN=''
QOS_FILTER_2_PORT='"
QOS_FILTER_2_PORT_TYPE=''
QOS_FILTER_2_OPTION='"

QOS_FILTER_3_CLASS='5'
QOS_FILTER_3_IP_INTERN='192.168.0.3"
QOS_FILTER_3_IP_EXTERN=''
QOS_FILTER_3_PORT='80"
QOS_FILTER_3_PORT_TYPE='client'
QOS_FILTER_3_OPTION=''

QOS_FILTER_4_CLASS='6"
QOS_FILTER_4_IP_INTERN='192.168.0.3"
QOS_FILTER_4_IP_EXTERN=''
QOS_FILTER_4_PORT=''
QOS_FILTER_4_PORT_TYPE=''
QOS_FILTER_4_OPTION=''

Option QOS_INTERNET_DEFAULT_DOWN was set in a way that traffic not being assigned to a
class by a filter is put in a non-existent class. This is to simplify the example and because it
is assumed that there is no unassigned traffic left. Traffic being sent to a non-existent class
is forwarded very slow. If a rest of traffic exists always ensure that it is assigned to its own
(existing) class.

Option QOS_INTERNET _DEFAULT_UP was set to 0 because upstream should not be regulated.

Example 3

An example targeting at learning the general structures of working with QoS.

Picture 1.3 once again shows the layout of example two but this time with an extension.
Both subclasses of the second class have two more subclasses attached. You see that it is
possible to have nested subclasses. The maximum for nested subclasses is a depth of 8 where
0 is the interface itself leaving 7 more possible subclass levels. “Width” is unlimited though.
A subclass can have an unlimited number of classes attached.

The picture shows as well that it is possible to have more than one filter attached to a class
as it is done in class 10. Pay attention that at the moment it is not possible to attach a filter
in the middle of the “tree” as F8 intended to.

Lets have a closer look at the sense of classes and subclasses. Classes set and control speed
of a connection. Spreading of speed is handled described as in Q0S_CLASS_x_MINBANDWIDTH. This

14

1. Documentation Of Package QOS

0
level 3
e N7 N T
1 2 level 2
_________________ - ———r < -
3 4 5 x level 1
N J_ L _____ H_o______ _
F1 F2
level O
N g
F3 F4

Figure 1.3.: Example 3

can have disadvantages if i.e. you attach all classes to one parent class. If it is for example
intended that one client PC should have half of the available bandwidth and the other half
is for a second client PC divided in 2/3 http and 1/3 for the rest (2/6 and 1/6 of the whole
bandwidth) this would happen: If both clients run at full load both get their half of the
bandwidth. If the second one is not transferring http 2/6 of unused bandwidth are distributed
not only to the second but to both PCs as decribed above. To avoid this subclasses are created.
Traffic of a class is at first distributed to its subclasses. Only if they don’t use the complete
traffic the rest is spread to the other classes. In the picture the areas that belong together are
encircled (red = 1, blue = 2, green = 5 and orange = 6.

Example 4

Configuration for ACK packet priorization in order to keep downstream high if upstream has
heavy load:

OPT_QOS="'yes'
QOS_INTERNET DEV N='1'
QOS_INTERNET_DEV_1='pppO'
QOS_INTERNET_BAND_DOWN='768Kibit/s'
QOS_INTERNET_BAND_UP='128Kibit/s'
QOS_INTERNET_DEFAULT_DOWN='0'
QOS_INTERNET _DEFAULT UP='2'

Configure ppp0 as the Internet device (DSL) and give it the usual up/downstream bandwidth
for TDSL (and some other providers). It may be necessary to lower upstream bandwidth for
some Kibibit for the trying.

15

1. Documentation Of Package QOS

No classes for downstream should be defined:

QOS_INTERNET _DEFAULT DOWN='0'

For upstream class number two should be the default class. The network device eth0 is set
to 10Mibit/s.

QOS_CLASS_N='2"'

QOS_CLASS_1_PARENT='0"
QOS_CLASS_1_MINBANDWIDTH='127Kibit/s'
QOS_CLASS_1_MAXBANDWIDTH='128Kibit/s'
QOS_CLASS_1_DIRECTION='up'
QOS_CLASS_1_PRIO='"

This is the class for ACK (acknowledgement) packets. ACK packets are rather small and thus
need only a minimum bandwidth. Because they should not be affected in any way they get
127Kibit/s. 1Kibit/s is left for the rest.

QOS_CLASS_2_PARENT='0'
QOS_CLASS_2_ MINBANDWIDTH='1Kibit/s'
QOS_CLASS_2_ MAXBANDWIDTH='128Kibit/s'
QOS_CLASS_2_DIRECTION='up'
QOS_CLASS_2_PRIO='"

This class is for everything else (except ACK packets). The bandwidth that is left is 1Kibit/s
(128-127=1). We don’t limit it to 1Kibit/s though, the class is limited by the entry

QOS_CLASS_2_ MAXBANDWIDTH='128Kibit/s'

Because our first class never can use all of its bandwidth there will be something left over
which then gets allocated to the second class. If upstream should be divided some more
(prominent use case) all other classes have to be subclasses “under” this class. Of course
QOS_INTERNET_DEFAULT_UP has to be adapted then.

QOS_FILTER_N='1"

QOS_FILTER_1_CLASS='1"
QOS_FILTER_1_IP_INTERN=''
QOS_FILTER_1_IP_EXTERN=''
QOS_FILTER_1_PORT=''
QOS_FILTER_1_PORT_TYPE=''
QOS_FILTER_1_OPTION='ACK'

This filter filters all packets matching option ACK (i.e. ACK packets). By specifying Q0S_-
FILTER_1_CLASS=’1’ we achieve that all these packets filtered are sent to class 1.

For testing purposes look for one or more good up- and download sources that can produce
full load for up- as well as for downstream. Have a look at the traffic display in ImonC. Try
this once with and once without QoS.

Downstream should not or not as much decline as without this configuration. It could
get even better by declining upstream bandwidth in steps of Kibibits and analyze the ef-
fect. I reached my optimum at 121Kibit/s (no declining downstreams anymore). Of course
MAXBANDWIDTH- and MINBANDWIDTH- values of all classes have to be adapted accord-

ingly.

16

A. Appendix For Package QOS

17

List of Figures

1.1. Example 1. e
1.2, Example 2. e e
1.3. Example 3.

18

List of Tables

19

Index

OPT_QOS, 3

QOS_CLASS N, 4
QOS_CLASS x DIRECTION, 5
QOS_CLASS x LABEL, 6
QOS_CLASS x MAXBANDWIDTH, 5
QOS_CLASS x MINBANDWIDTH, 5
QOS_CLASS x PARENT, 4
QOS_CLASS x PRIO, 6
QOS_FILTER N, 6
QOS_FILTER x CLASS, 7
QOS_FILTER x IP EXTERN, 7
QOS_FILTER x IP INTERN, 7
QOS_FILTER x OPTION, 8
QOS_FILTER x PORT, 8
QOS_FILTER x PORT TYPE, 8
QOS_INTERNET BAND DOWN, 3
QOS_INTERNET BAND UP, 3
QOS_INTERNET DEFAULT DOWN, 4
QOS_INTERNET DEFAULT UP, 4
QOS_INTERNET DEV N, 3
QOS_INTERNET DEV x, 3

20

	Package QOS
	Contents
	Documentation Of Package QOS
	QoS - Quality of Service
	Configuration
	Examples

	Appendix For Package QOS
	List of Figures
	List of Tables
	Index

