
Package ADVANCED_NETWORKING
Version 3.10.18

Frank Meyer
email: frank@fli4l.de

the fli4l-Team
email: team@fli4l.de

September 15, 2019

mailto:frank@fli4l.de
mailto:team@fli4l.de


Contents

1 Documentation of the package ADVANCED_NETWORKING 3
1.1 Advanced Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Broadcast Relay - Forwarding of IP Broadcasts . . . . . . . . . . . . . . 3
1.1.2 Bonding - Combining Several Network Interface Cards In One Link . . 4
1.1.3 VLAN - 802.1Q Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Device MTU - Adjusting MTU Values . . . . . . . . . . . . . . . . . . . 9
1.1.5 BRIDGE - Ethernet Bridging for fli4l . . . . . . . . . . . . . . . . . . . 9
1.1.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.7 EBTables - EBTables for fli4l . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.8 ETHTOOL - Settings for Ethernet Network Adapters . . . . . . . . . . 13
1.1.9 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

List of Figures 16

List of Tables 17

Index 18

2



1 Documentation of the package
ADVANCED_NETWORKING

1.1 Advanced Networking
The package ’advanced networking’ provides bonding and bridging capabilities for the fli4l-
router. EBTables (http://ebtables.sourceforge.net/) support can be enabled as well. This
allows to build a transparent packet filter. To all options of the advanced_networking package
generally applies:

This package is only for users with profund knowledge about networks and
routing.

Very unusual problems can appear especially using EBTables without perfectly knowing the
diverse operational modes of layer 2 and 3. Some filtering rules of the packet filter will work
completely different with EBTables support enabled.

1.1.1 Broadcast Relay - Forwarding of IP Broadcasts
Using a Broadcast Relay, IP broadcasts can surpass interface boundaries. This is necessary
for applications which determine network devices using broadcasts (eg QNAP Finder). Broad-
casts are normally not passed across network boundaries by the router. This problem can be
circumvented by using a broadcast relay.

Within a Broadcast Relay broadcasts are always forwarded to all connected interfaces. This
means that setting up a second Broadcast Relay with interfaces swapped is not necessary. In
addition, multiple broadcast relays including the same interface are not allowed.

OPT_BCRELAY Broadcast Forwarding
Default: OPT_BCRELAY=’no’
Setting ’yes’ here activates the Broadcast Relay package. Specifying ’no’ deactivates
the Broadcast Relay package completely.

BCRELAY_N Default: BCRELAY_N=’0’
The number of Broadcast Relays to configure.

BCRELAY_x_IF_N Default: BCRELAY_x_IF_N=’1’
Number of interfaces assigned to this broadcast relay.

BCRELAY_x_IF_x Default: BCRELAY_x_IF_x=” Name of the interface assigned to this broad-
cast relay.

For illustration an example follows where the computer with the application (eg QNAP
Finder) is located in the internal network (connected to eth0) and the NAS is in a different
network (connected to eth1).

3

http://ebtables.sourceforge.net/


1 Documentation of the package ADVANCED_NETWORKING

OPT_BCRELAY='yes'
BCRELAY_N='1'
BCRELAY_1_IF_N='2'
BCRELAY_1_IF_1='eth0'
BCRELAY_1_IF_2='eth1'

1.1.2 Bonding - Combining Several Network Interface Cards In One Link
Bonding refers to joining at least two network interface cards into one link. The cards even
may be of different type (ie 3Com and Intel) or speed (ie 10 Mbit/s or 100 Mbit/s). You can
either connect linux computers directly or connect to a network switch using bonding. In this
way a 200 Mbit/s full duplex connection from a flil4-router to a switch can be used without
much effort. Everyone interested in using bonding should have read the documentation in the
kernel directory (bonding.txt). The names of the bonding settings largely correspond to the
names used there.

OPT_BONDING_DEV Default: OPT_BONDING_DEV=’no’
’yes’ activates the bonding package, ’no’ deativates the bonding package completely.

BONDING_DEV_N Default: BONDING_DEV_N=’0’
Number of bonding devices to be configured.

BONDING_DEV_x_DEVNAME Default: BONDING_DEV_x_DEVNAME=”
Name of the bonding device to be created. It should consist of the prefix ’bond’ and a
trailing number with out a leading ’0’. The numbers of the bonding devices don’t have
to start with ’0’ and need not be consecutive. Possible values could be ’bond0’, ’bond8’
or ’bond99’.

BONDING_DEV_x_MODE Default: BONDING_DEV_x_MODE=”
Specifies the bonding method. Default is round-robin ’balance-rr’. Possible values are
listed below:

balance-rr Round-robin method: Submit sequentially over all slaves from the first to the
last. This method provides both load balancing and fault tolerance.

active-backup Active backup: Only one slave in the bond is active. The other slaves are
activated only when the active slave fails. The MAC address of the bond is only
visible on one port (network adapter) so it does not confuse the switch. This mode
provides fault tolerance.

balance-xor XOR method: Submit based on the formula [ (Source-MAC-address XOR
destination-MAC-address) modulo the number of slaves]. This ensures that the
same slave always is used for the same destination-MAC-address. This method
provides both load balancing and fault tolerance.

broadcast Broadcast method: Transmits everything on all slave devices. This mode
provides fault tolerance.

802.3ad IEEE 802.3ad dynamic link aggregation. Creates aggregation groups that share
the same speed and duplex settings. Transmits on all slaves in the active aggregator.
Requirements:

4



1 Documentation of the package ADVANCED_NETWORKING

• ethtool support in the base device driver to retrieve speed and duplex status
for each device.

• a switch that supports dynamic IEEE 802.3ad connection aggregation.
balance-tlb Adaptive load balancing for outgoing data: channel bonding that does not

need any special features in the switch. The outgoing network traffic is distributed
on each slave according to the current load. Incoming network traffic is received
by the current slave. If the receiving slave fails, another slave takes over the MAC
address of the slave gone down.
Requirements:

• ethtool support in the base device driver to retrieve speed and duplex status
for each device.

balance-alb Adaptive load balancing: includes both balance-tlb, and inbound load bal-
ancing (rlb) for IPV4 traffic and needs no special requirements on the Switch. Load
Balancing for incoming traffic is achieved through ARP requests. The bonding
driver catches ARP responses from the server on their way outside and overrides
the source hardware address with the unique hardware address of a slave in the
bond. This way different clients use different hardware addresses for the server.
Incoming traffic from connections created by the server will also be balanced. If the
server sends ARP requests, the bonding driver copies and stores the client IP from
the ARP. At the time the ARP response of the client arrives the bonding driver
determines its hardware address and creates an ARP reply to this client assigning
a client in the bond to it. A problematic effect of ARP arrangements for load
balancing is that every time an ARP request is sent the hardware address of the
bond is used. Clients learn the hardware address of the bond and the incoming
traffic on the current slave collapses. This fact is countered in a way that updates
(ARP Replies) to all clients will be sent to their respective hardware addresses so
that the traffic is divided again. Incoming traffic will be newly allocated even when a
new slave is added to the bonding or an inactive slave is re-activated. The receiving
load is distributed sequentially (round robin) in the group of the slave with the
largest network speed in the bond.
When a connection is restored or a new slave joins the bond incoming traffic will be
distributed anew to all active Slaves in the bond by sending ARP replies with the
selected MAC addresses to each client. The parameter ’updelay’ must be set to a
value greater than or equal to the forwarding delay of the switch in order to avoid
blocking of ARP responses to clients.
Requirements:

• ethtool support in the base device driver to retrieve speed and duplex status
for each device.

• support in the base device driver to set the hardware address even when the de-
vice is open. This is neccessary for granting that at every time at least one slave
in the bond is carrying the hardware address of the bond (curr_active_slave)
although every slave in the bond has its own unique hardware address. If
curr_active_slave fails its hardware address will simply be replaced with a new
one.

5



1 Documentation of the package ADVANCED_NETWORKING

BONDING_DEV_x_DEV_N Default: BONDING_DEV_x_DEV_N=’0’
Specifies the number of physical devices the bond consists of. E.g. for a bond between
’eth0’ and ’eth1’ (two eth-devices) ’2’ has to be entered.

BONDING_DEV_x_DEV_x Default: BONDING_DEV_x_DEV_x=”
The name of a physical device which belongs to this bonding device. An example would
be the value ’eth0’. Please note that a physical device that you use for a bond can’t be
used for anything else. So you can’t use it additionally for a DSL modem, a bridge, a
VLAN or inclusion in base.txt.

BONDING_DEV_x_MAC Default: BONDING_DEV_x_MAC=”
This setting is optional and can also be completely omitted.
A bonding device defaults to the MAC address of the first physical device which is used
for bonding. If you do not want this it is possible to specify a MAC address the bonding
device should use here.

BONDING_DEV_x_MIIMON Default: BONDING_DEV_x_MIIMON=’100’
This setting is optional and can also be completely omitted.
Specifies the interval (in milliseconds) in which the individual connections of a bonding
device are checked for their link status. The link status of each physical device in the
bond will be checked every x milliseconds. Setting this to ’0’ will disable the miimon
monitoring.

BONDING_DEV_x_USE_CARRIER Default: BONDING_DEV_x_USE_CARRIER=’yes’
This setting is optional and can also be completely omitted.
If the link status check by miimon (see above) is enabled this setting can specify the
function performing the check.

• ’yes’: netif _carrier_ok() function
• ’no: direct calls to MII or ethtool ioctl() System calls

The netif_carrier_ok() method is more efficient, but not all drivers do support this
method.

BONDING_DEV_x_UPDELAY Default: BONDING_DEV_x_UPDELAY=’0’
This setting is optional and can also be completely omitted.
The value of this setting multiplied by the setting of BONDING_DEV_x_MIIMON specifies the
time a in which a connection of bonding devices is activated after the corresponding link
(for example ’eth0’) is up. This way the connection of the bonding device is activated
until the link status switches to "not connected".

BONDING_DEV_x_DOWNDELAY Default: BONDING_DEV_x_DOWNDELAY=’0’
This setting is optional and can also be completely omitted.
The value of this setting multiplied by the setting of BONDING_DEV_x_MIIMON specifies the
time a in which a connection of bonding devices is deactivated if the appropriate link (iE
an eth-device) fails. This will deactivate the connection of a bonding device temporarily
until the link status is back to ’active’.

6



1 Documentation of the package ADVANCED_NETWORKING

BONDING_DEV_x_LACP_RATE Default: BONDING_DEV_x_LACP_RATE=’slow’
This setting is optional and can also be completely omitted.
Specifiy how often link informations are exchanged between the link partners (for example
a switch or another linux PC) if BONDING_DEV_x_MODE=” is set to ’802.3ad’.

• ’slow’: every 30 seconds
• ’fast’: each second.

BONDING_DEV_x_PRIMARY Default: BONDING_DEV_x_PRIMARY=”
This setting is optional and can also be completely omitted.
Specify primary output device if mode is set to ’active-backup’. This is useful if the
various devices have different speeds. Provide a string (for example ’eth0’) for the device
to be used primarily. If a value is entered and the device is online it will be used as the
first output medium. Only if the device is offline another device will be used. If a failure
is detected a new standard output medium will be chosen. This comes in handy if one
slave has priority over another, for example if a slave is faster than another (1000 Mbit/s
versus 100 Mbit/s). If the 1000 Mbit/s slave fails and later gets back up it may be of
advantage to set the faster slave active again without having to cause a fail of the 100
Mbit/s slave artificially (for example by pulling the plug).

BONDING_DEV_x_ARP_INTERVAL Default: BONDING_DEV_x_ARP_INTERVAL=’0’
This setting is optional and can also be completely omitted.
The interval in which IP-addresses specified in BONDING_DEV_x_ARP_IP_TARGET_x are checked
by using their ARP responses (in milliseconds). If ARP monitoring is used in load-
balancing mode (mode 0 or 2) the switch should be adjusted to distribute packets to
all connections equally (for example round robin). If the switch is set to distribute the
packets according to the XOR method all responses of the ARP targets will arrive on
the same connection which could cause failure for all team members. ARP monitoring
should not be combined with miimon. Passing ’0’ will disable ARP monitoring.

BONDING_DEV_x_ARP_IP_TARGET_N Default: BONDING_DEV_x_ARP_IP_TARGET_N=”
This setting is optional and can also be completely omitted.
The number of IP-addresses which are used for ARP checking. A maximum of 16 IP-
addresses can be checked.

BONDING_DEV_x_ARP_IP_TARGET_x Default: BONDING_DEV_x_ARP_IP_TARGET_x=”
This setting is optional and can also be completely omitted.
If BONDING_DEV_x_ARP_INTERVAL is ą 0, specify one IP address which is used as the target
for ARP requests to evaluate the quality of the connection. Enter values using format
’ddd.ddd.ddd.ddd’. To get ARP monitoring to work at least one IP address has to be
given here.

7



1 Documentation of the package ADVANCED_NETWORKING

1.1.3 VLAN - 802.1Q Support
Support for 802.1Q VLAN is reasonable only in conjunction with using appropriate switches.
Port-based VLAN switches are not suitable. A general introduction to the subject VLAN can
be found at http://en.wikipedia.org/wiki/IEEE_802.1Q. At http://de.wikipedia.org/wiki/
VLAN some additional information can be found.

Please note that not any network card can handle VLANs. Some can not handle VLANs at
all, others require a matching MTU and few cards work without any problems. The author of
the advanced_networking package uses Intel network cards with the ’e100’ driver without any
problem. MTU adjustment is not necessary. 3COM’s ’3c59x’ driver requires MTU adjustment
to 1496 otherwise the card won’t work correctly. The ’starfire’ driver does not work properly if
a VLAN device is added to a bridge. In this case no packets can be received. Those who want
to work with VLANs should ensure that the respective Linux NIC drivers support VLANs
correctly.

OPT_VLAN_DEV Default: OPT_VLAN_DEV=’no’
’yes’ activates the VLAN package, ’no’ deactivates it.

VLAN_DEV_N Default: VLAN_DEV_N=”
Number of VLAN devices to configure.

VLAN_DEV_x_DEV Default: VLAN_DEV_x_DEV=”
Name of the device connected to a VLAN capable switch (iE ’eth0’, ’br1’, ’eth2’...).

VLAN_DEV_x_VID Default: VLAN_DEV_x_VID=”
The VLAN ID for which the appropriate VLAN device should be created. The name
of the VLAN device consists of the prefix ’ethX’ and the attached VLAN ID (without
leading ’0’). For example ’42’ creates a VLAN device ’eth0.42’ on the fli4l-router.

VLAN devices on the fli4l-router are always named ’ădeviceą.ăvidą’. So if you have an eth-
device connected to a VLAN-capable switch and you want to use VLANs 10, 11 and 23 on the
fli4l-router you have to configure 3 VLAN devices with the eth-device as VLAN_DEV_x_DEV=’ethX’
and the respective VLAN ID in VLAN_DEV_x_VID=”. Example:

OPT_VLAN_DEV='yes'
VLAN_DEV_N='3'
VLAN_DEV_1_DEV='eth0'
VLAN_DEV_1_VID='10' # will create device: eth0.10
VLAN_DEV_2_DEV='eth0'
VLAN_DEV_2_VID='11' # will create device: eth0.11
VLAN_DEV_3_DEV='eth0'
VLAN_DEV_3_VID='23' # will create device: eth0.23

Please always remember to check the MTU of all units involved. Caused by the
VLAN header the frames will be 4 bytes longer. If necessary the MTU must be
changed to 1496 on the devices.

8

http://en.wikipedia.org/wiki/IEEE_802.1Q
http://de.wikipedia.org/wiki/VLAN
http://de.wikipedia.org/wiki/VLAN


1 Documentation of the package ADVANCED_NETWORKING

1.1.4 Device MTU - Adjusting MTU Values
In rare circumstances it may be necessary to adjust the MTU of a device. E.G. some not 100%
VLAN-compatible network cards need to adjust the MTU. Please remember that few network
cards are capable of processing Ethernet frames larger than the 1500 bytes!

DEV_MTU_N Default: DEV_MTU_N=”
This setting is optional and can also be completely omitted.
Number of devices to change their MTU settings.

DEV_MTU_x Default: DEV_MTU_x=”
This setting is optional and can also be completely omitted.
Name of the device to change its MTU followed by the MTU to be set. Both statements
have to be separated by a space. To set a MTU of ’1496’ for ’eth0’ enter the following:

DEV_MTU_N='1'
DEV_MTU_1='eth0 1496'

1.1.5 BRIDGE - Ethernet Bridging for fli4l
This is a full-fledged ethernet-bridge using spanning tree protocol on demand. For the user
the Computer seems to work as a layer 3 switch on configured ports.
Further information on bridging can be found here:

• Homepage of the Linux Bridging Project:
http://bridge.sourceforge.net/

• The detailed and authoritative description of the bridging standards:
http://standards.ieee.org/getieee802/download/802.1D-2004.pdf.
(Mainly informations from page 153 on are interesting. Please note that the Linux
bridging code is working according to standards from 1998, allowing only 16 bit Values
for pathcost as an example.)

• Calculation of different timing values for the spanning tree protocol:
http://www.dista.de/netstpclc.htm

• See how STP is working by looking at some nice examples:
http://web.archive.org/web/20060114052801/http://www.zyxel.com/support/supportnote/
ves1012/app/stp.htm

OPT_BRIDGE_DEV Default: OPT_BRIDGE_DEV=’no’
’yes’ activates the bridge package, ’no’ deactivates it.

9

http://bridge.sourceforge.net/
http://standards.ieee.org/getieee802/download/802.1D-2004.pdf
http://www.dista.de/netstpclc.htm
http://web.archive.org/web/20060114052801/http://www.zyxel.com/support/supportnote/ves1012/app/stp.htm
http://web.archive.org/web/20060114052801/http://www.zyxel.com/support/supportnote/ves1012/app/stp.htm


1 Documentation of the package ADVANCED_NETWORKING

BRIDGE_DEV_BOOTDELAY Default: BRIDGE_DEV_BOOTDELAY=’yes’
This setting is optional and can also be completely omitted.
As a bridge needs at least 2 ˆ BRIDGE_DEV_x_FORWARD_DELAY in seconds to become active
this period has to be waited if devices are needed at the startup of the fli4l-router. As
an example consider sending syslog messages or dialing in via DSL. If the entry is set
to ’yes’ 2 ˆ BRIDGE_DEV_x_FORWARD_DELAY is waited automatically. If the bridges are
not required at startup-time ’no’ should be set to accelerate the startup process of fli4l
router.

BRIDGE_DEV_N Default: BRIDGE_DEV_N=’1’
The number of independent bridges. Each bridge has to be considered completely iso-
lated. This applies in particular for the setting of BRIDGE_DEV_x_STP. There will be created
one virtual device by the name of ’brănummerą’ per bridge.

BRIDGE_DEV_x_NAME Default: BRIDGE_DEV_x_NAME=”
The symbolic name of the bridge. This name can be used by other packages in order to
use the bridge regardless of its device name.

BRIDGE_DEV_x_DEVNAME Default: BRIDGE_DEV_x_DEVNAME=”
Each bridge device needs a name in the form of ’brănumberą’. ănumberą can be a
number between ’0’ and ’99’ without leading ’0’. Possible entries could be ’br0’, ’br9’
or ’br42’. Names can be chosen arbitrary, the first bridge may be ’br3’ and the second
’br0’.

BRIDGE_DEV_x_DEV_N Default: BRIDGE_DEV_x_DEV_N=’0’
How many network devices belong to the bridge? The count of devices that should be
connected to the bridge. It can even be ’0’ if the bridge is only a placeholder for an
IP-address that should be taken over by a VPN-tunnel connected to the bridge.

BRIDGE_DEV_x_DEV_x_DEV Specifies which device can be connected to the bridge. You
can fill in an eth-device (ie ’eth0’), a bonding device (iE ’bond0’) or also a VLAN-device
(iE ’vlan11’). A device connected here may not be used in other places and is not allowed
to get an IP-address assigned.

BRIDGE_DEV_1_DEV_N='3'
BRIDGE_DEV_1_DEV_1_DEV='eth0.11' #VLAN 11 on eth0
BRIDGE_DEV_1_DEV_2_DEV='eth2'
BRIDGE_DEV_1_DEV_3_DEV='bond0'

BRIDGE_DEV_x_AGING Default: BRIDGE_DEV_x_AGING=’300’
This setting is optional and can also be completely omitted.
Specifies the time after which old entries in the bridges’ MAC table will be deleted. If in
this amount of time in seconds no data is received or transmitted by the computer with
the network card the corresponding MAC address will be deleted in the bridges’ MAC
table.

10



1 Documentation of the package ADVANCED_NETWORKING

BRIDGE_DEV_x_GARBAGE_COLLECTION_INTERVAL
Default: BRIDGE_DEV_x_GARBAGE_COLLECTION_INTERVAL=’4’
This setting is optional and can also be completely omitted.
Specifies the time after which „garbage collection“ will be done. All dynamic entries will
be checked. Entries not longer valid and outdated will get deleted. In particular old
invalid connections will be deleted.

BRIDGE_DEV_x_STP Default: BRIDGE_DEV_x_STP=’no’
This setting is optional and can also be completely omitted.
Spanning tree protocol allows to manage multiple connections to different switches. This
results in redundancy ensuring network functionality in case of line failures. Without the
use of STP redundant lines between switches aren’t possible and networking may fail.
STP tries to use the fastest connection between two switches. This way even connections
with different speeds are reasonable. You may iE use a 1 Gbit/s connection as main and
a second 100 Mbit/s as a fallback.
A good source of background informations can be found here:
http://en.wikipedia.org/wiki/Spanning_Tree_Protocol.

BRIDGE_DEV_x_PRIORITY Default: BRIDGE_DEV_x_PRIORITY=”
This setting is optional and can also be completely omitted.
Only valid if BRIDGE_DEV_x_STP=’yes’ is set!
Which priority has this bridge? The bridge with the lowest priority wins the main bridge
election. Each bridge should have a different priority. Please note that the bridge with
the lowest priority should also have the biggest available bandwith because in addition
to the complete data traffic control packets will be sent by it every 2 seconds. (See also:
BRIDGE_DEV_x_HELLO)
Valid Values are from ’0’ to ’61440’ in steps of 4096.

BRIDGE_DEV_x_FORWARD_DELAY Default: BRIDGE_DEV_x_FORWARD_DELAY=’15’
This setting is optional and can also be completely omitted.
Only valid if BRIDGE_DEV_x_STP=’yes’ is set!
If one connection of the bridge was deactivated or if a connection is added to the bridge it
takes the given time in seconds ˆ 2 until the connection can send data. This parameter
is crucial for the time the bridge needs to recognize a dead connection. The time period
is calculated in seconds with this formula:
BRIDGE_DEV_x_MAX_MESSAGE_AGE`p2 ˆ BRIDGE_DEV_x_FORWARD_DELAYq

In standard values this means: 20`p2ˆ 15q “ 50 seconds. The time to recognize a dead
connection can be minimized if BRIDGE_DEV_x_HELLO is set to 1 second and BRIDGE_DEV_x_FORWARD_DELAY
is set to 4 seconds. In addition BRIDGE_DEV_x_MAX_MESSAGE_AGE has to set to 4 seconds.
This leads to: 4` p2ˆ 4q “ 12 seconds. This is as fast as it can get.

BRIDGE_DEV_x_HELLO Default: BRIDGE_DEV_x_HELLO=’2’
This setting is optional and can also be completely omitted.

11

http://en.wikipedia.org/wiki/Spanning_Tree_Protocol


1 Documentation of the package ADVANCED_NETWORKING

Only valid if BRIDGE_DEV_x_STP=’yes’ is set!
The time mentioned in BRIDGE_DEV_x_HELLO is the time in seconds in which the so-called
’Hello-message’ is sent by the main bridge. These messages are necessary for STP’s
automatic configuration.

BRIDGE_DEV_x_MAX_MESSAGE_AGE Default: BRIDGE_DEV_x_MAX_MESSAGE_AGE=’20’
This setting is optional and can also be completely omitted.
Only valid if BRIDGE_DEV_x_STP=’yes’ is set!
The maximum time period the last ’Hello-message’ stays valid. If no new ’Hello-message’
is received during this period a new main bridge election will be triggered. This is why
this value should never be lower than 2 ˆ BRIDGE_DEV_x_HELLO.

BRIDGE_DEV_x_DEV_x_PORT_PRIORITY Default: BRIDGE_DEV_x_DEV_x_PORT_PRIORITY=’128’
This setting is optional and can also be completely omitted.
Only valid if BRIDGE_DEV_x_STP=’yes’ is set!
Only relevant if multiple connections with the same BRIDGE_DEV_x_DEV_x_PATHCOST have
the same destination. If this is the case the connection with lowest priority will be chosen.
Valid values are ’0’ to ’240’ in steps of ’16’.

BRIDGE_DEV_x_DEV_x_PATHCOST Default: BRIDGE_DEV_x_DEV_x_PATHCOST=’100’
This setting is optional and can also be completely omitted.
Only valid if BRIDGE_DEV_x_STP=’yes’ is set!
Indirectly specifies the bandwidth for this connection. The lower the value the higher is
the bandwidth and therefore the connection gets a higher priority.
The calculation base proposed is 1000000 kbit/s which leads to the traffic costs listed in
table 1.1. Please note to use the actual usable bandwidth in the formula when calculating.
As a result this leads to significantly lower values than you would expect, especially on
wireless lan.
Note: The current IEEE standard from 2004 uses 32 bit numbers for bandwidth calcu-
lation which is not supported on Linux yet.

Bandwidth Setting of BRIDGE_DEV_x_DEV_x_PATHCOST
64 kbit/s 15625

128 kbit/s 7812
256 kbit/s 3906
10 Mbit/s 100
11 Mbit/s 190
54 Mbit/s 33

100 Mbit/s 10
1 Gbit/s 1

Table 1.1: Values for BRIDGE_DEV_x_DEV_x_PATHCOST as a function of bandwidth

12



1 Documentation of the package ADVANCED_NETWORKING

1.1.6 Notes
A bridge will forward any type of Ethernet data - thus e.g. a regular DSL modem can be used
over WLAN as if it had a WLAN interface. No packets that pass the bridge will be examined
for any undesirable activities (ie the fli4l packet filter is not active!). Use only after careful
consideration of security risks (ie as a WLAN access point). There is also the possibility to
activate EBTables support however.

1.1.7 EBTables - EBTables for fli4l
As of Version 2.1.9 fli4l has rudimental EBTables support. By setting OPT_EBTABLES=’yes’
EBTables support will get activated.

This means that all ebtables kernel modules get loaded and the ebtables program on the
fli4l-routers will get available. In contrast to the much simplified netfilter configuration through
the different filter lists of fli4l it then is necessary to write an ebtables script of your own. This
means you have to write the complete ebtables script yourself.

For background informations about EBTables support please read the EBTables documen-
tation at http://ebtables.sourceforge.net.

There is the possibility of issuing ebtables commands on the router before and after setting
up the netfilter (PF_INPUT_x, PF_FORWARD_x etc). To do so, create the files ebtables.pre und
ebtables.post in the directory config/ebtables. Ebtables.pre will get executed before and ebta-
bles.post after configuring the netfilter. Please remember that an error in the ebtables scripts
may interrupt the boot process of the fli4l-router!
Before using EBTables you should definitely read the complete documentation.

By using EBTables the complete behavior of the router may change! Especially
filtering by mac: in PF_FORWARD will not work as before.

Have a look at this page giving a small glimpse about how the the ebtables support works:
http://ebtables.sourceforge.net/br_fw_ia/br_fw_ia.html.

1.1.8 ETHTOOL - Settings for Ethernet Network Adapters
By setting OPT_ETHTOOL=’yes’ the ethtool program will be copied to the fli4l router in order to
be used by other packages. By the help of this program, various settings of Ethernet network
cards and drivers can be displayed and changed.

ETHTOOL_DEV_N Specify the number of settings to set at boot time.
Default: ETHTOOL_DEV_N=’0’

ETHTOOL_DEV_x ETHTOOL_DEV_x indicates for which network device the settings should
apply.
Example: ETHTOOL_DEV_1=’eth0’

ETHTOOL_DEV_x_OPTION_N ETHTOOL_DEV_x_OPTION_N indicates the number of settings
for the device.

ETHTOOL_DEV_x_OPTION_x_NAME

13

http://ebtables.sourceforge.net
http://ebtables.sourceforge.net/br_fw_ia/br_fw_ia.html


1 Documentation of the package ADVANCED_NETWORKING

ETHTOOL_DEV_x_OPTION_x_VALUE The variable ETHTOOL_DEV_x_OPTION_x_NAME gives
the name and ETHTOOL_DEV_x_OPTION_x_VALUE the value of the setting to be changed.
Following is a list of options and possible values activated by now:

• speed 10|100|1000|2500|10000 expandable by HD or FD (default FD = full duplex)
• autoneg on|off
• advertise %x
• wol p|u|m|b|a|g|s|d

Example:

OPT_ETHTOOL='yes'
ETHTOOL_DEV_N='2'
ETHTOOL_DEV_1='eth0'
ETHTOOL_DEV_1_OPTION_N='1'
ETHTOOL_DEV_1_OPTION_1_NAME='wol'
ETHTOOL_DEV_1_OPTION_1_VALUE='g'
ETHTOOL_DEV_2='eth1'
ETHTOOL_DEV_2_OPTION_N='2'
ETHTOOL_DEV_2_OPTION_1_NAME='wol'
ETHTOOL_DEV_2_OPTION_1_VALUE='g'
ETHTOOL_DEV_2_OPTION_2_NAME='speed'
ETHTOOL_DEV_2_OPTION_2_VALUE='100hd'

Further informations about ethtool can be found here: http://linux.die.net/man/8/ethtool

1.1.9 Example
For understanding a simple example is certainly helpful. In our example we assume 2 parts
of a building which are connected by 2 x 100 Mbit/s lines. Four separate networks should be
routed from one building to the other.
To achieve this a combination of bonding (joining the two physical lines) VLAN (to trans-

port several separate networks on the bond) and bridging (to link the different nets to the
bond/VLAN) is used. This has been tested successful on 2 Intel e100 cards and 1 Adaptec
4-port card ANA6944 in each building’s router. The two e100 have the device names ’eth0’
and ’eth1’. They are used for connecting the building. Intel e100’s are the only cards known
to work flawlessly with VLAN by now. Gigabit-cards should work too. The 4 ports of the
multiport-card are used for the networks and have device names ’eth2’ to ’eth5’.
At first the two 100 Mbit/s lines will be bonded:

OPT_BONDING_DEV='yes'
BONDING_DEV_N='1'
BONDING_DEV_1_DEVNAME='bond0'
BONDING_DEV_1_MODE='balance-rr'
BONDING_DEV_1_DEV_N='2'
BONDING_DEV_1_DEV_1='eth0'
BONDING_DEV_1_DEV_2='eth1'

This creates the device ’bond0’. Now the two VLANs will be built on this bond. We use
VLAN-IDs 11, 22, 33 und 44:

14

http://linux.die.net/man/8/ethtool


1 Documentation of the package ADVANCED_NETWORKING

OPT_VLAN_DEV='yes'
VLAN_DEV_N='4'
VLAN_DEV_1_DEV='bond0'
VLAN_DEV_1_VID='11'
VLAN_DEV_2_DEV='bond0'
VLAN_DEV_2_VID='22'
VLAN_DEV_3_DEV='bond0'
VLAN_DEV_3_VID='33'
VLAN_DEV_4_DEV='bond0'
VLAN_DEV_4_VID='44'

Over this two VLAN connections the bridge into the networks segments will be built. Rout-
ing is not necessary this way.

OPT_BRIDGE_DEV='yes'
BRIDGE_DEV_N='4'
BRIDGE_DEV_1_NAME='_VLAN11_'
BRIDGE_DEV_1_DEVNAME='br11'
BRIDGE_DEV_1_DEV_N='2'
BRIDGE_DEV_1_DEV_1='bond0.11'
BRIDGE_DEV_1_DEV_2='eth2'
BRIDGE_DEV_2_NAME='_VLAN22_'
BRIDGE_DEV_2_DEVNAME='br22'
BRIDGE_DEV_2_DEV_N='2'
BRIDGE_DEV_2_DEV_1='bond0.22'
BRIDGE_DEV_2_DEV_2='eth3'
BRIDGE_DEV_3_NAME='_VLAN33_'
BRIDGE_DEV_3_DEVNAME='br33'
BRIDGE_DEV_3_DEV_N='2'
BRIDGE_DEV_3_DEV_1='bond0.33'
BRIDGE_DEV_3_DEV_2='eth4'
BRIDGE_DEV_4_NAME='_VLAN44_'
BRIDGE_DEV_4_DEVNAME='br44'
BRIDGE_DEV_4_DEV_N='2'
BRIDGE_DEV_4_DEV_1='bond0.44'
BRIDGE_DEV_4_DEV_2='eth5'

As a result all 4 Nets are connected with each other absolutely transparent and share the
200 Mbit/s connection. Even with a failure of one 100 Mbit/s line the connection will not fail.
If necessary EBTables support can also be activated e.g. to activate certain packet filter.
This configuration is set up on two fli4l routers. I think this is an impressive example what

the advanced_networking package can do.

15



List of Figures

16



List of Tables

1.1 Values for BRIDGE_DEV_x_DEV_x_PATHCOST as a function of bandwidth 12

17



Index

BCRELAY_N, 3
BCRELAY_x_IF_N, 3
BCRELAY_x_IF_x, 3
BONDING_DEV_N, 4
BONDING_DEV_x_ARP_INTERVAL, 7
BONDING_DEV_x_ARP_IP_TARGET_-

N, 7
BONDING_DEV_x_ARP_IP_TARGET_-

x, 7
BONDING_DEV_x_DEV_N, 6
BONDING_DEV_x_DEV_x, 6
BONDING_DEV_x_DEVNAME, 4
BONDING_DEV_x_DOWNDELAY, 6
BONDING_DEV_x_LACP_RATE, 6
BONDING_DEV_x_MAC, 6
BONDING_DEV_x_MIIMON, 6
BONDING_DEV_x_MODE, 4
BONDING_DEV_x_PRIMARY, 7
BONDING_DEV_x_UPDELAY, 6
BONDING_DEV_x_USE_CARRIER, 6
BRIDGE_DEV_BOOTDELAY, 9
BRIDGE_DEV_N, 10
BRIDGE_DEV_x_AGING, 10
BRIDGE_DEV_x_DEV_N, 10
BRIDGE_DEV_x_DEV_x_DEV, 10
BRIDGE_DEV_x_DEV_x_PATHCOST,

12
BRIDGE_DEV_x_DEV_x_PORT_PRIORITY,

12
BRIDGE_DEV_x_DEVNAME, 10
BRIDGE_DEV_x_FORWARD_DELAY, 11
BRIDGE_DEV_x_GARBAGE_COLLECTION_-

INTERVAL, 10
BRIDGE_DEV_x_HELLO, 11
BRIDGE_DEV_x_MAX_MESSAGE_AGE,

12
BRIDGE_DEV_x_NAME, 10
BRIDGE_DEV_x_PRIORITY, 11

BRIDGE_DEV_x_STP, 11

DEV_MTU_N, 9
DEV_MTU_x, 9

ETHTOOL_DEV_N, 13
ETHTOOL_DEV_x, 13
ETHTOOL_DEV_x_OPTION_N, 13
ETHTOOL_DEV_x_OPTION_x_NAME,

13
ETHTOOL_DEV_x_OPTION_x_VALUE,

13

OPT_BCRELAY, 3
OPT_BONDING_DEV, 4
OPT_BRIDGE_DEV, 9
OPT_EBTABLES, 13
OPT_ETHTOOL, 13
OPT_VLAN_DEV, 8

VLAN_DEV_N, 8
VLAN_DEV_x_DEV, 8
VLAN_DEV_x_VID, 8

18


	Package ADVANCED_NETWORKING
	Contents
	Documentation of the package ADVANCED_NETWORKING
	Advanced Networking
	Broadcast Relay - Forwarding of IP Broadcasts
	Bonding - Combining Several Network Interface Cards In One Link
	VLAN - 802.1Q Support
	Device MTU - Adjusting MTU Values
	BRIDGE - Ethernet Bridging for fli4l
	Notes
	EBTables - EBTables for fli4l
	ETHTOOL - Settings for Ethernet Network Adapters
	Example


	List of Figures
	List of Tables
	Index


