
The Buildroot user manual i

The Buildroot user manual

The Buildroot user manual ii

Contents

I Getting started 1

1 About Buildroot 2

2 System requirements 3

2.1 Mandatory packages . 3

2.2 Optional packages . 4

3 Getting Buildroot 5

4 Buildroot quick start 6

5 Community resources 8

II User guide 9

6 Buildroot configuration 10

6.1 Cross-compilation toolchain . 10

6.1.1 Internal toolchain backend . 11

6.1.2 External toolchain backend . 11

6.1.2.1 External toolchain wrapper . 12

6.2 /dev management . 13

6.3 init system . 13

7 Configuration of other components 15

8 General Buildroot usage 16

8.1 make tips . 16

8.2 Understanding when a full rebuild is necessary . 17

8.3 Understanding how to rebuild packages . 17

8.4 Offline builds . 18

8.5 Building out-of-tree . 18

The Buildroot user manual iii

8.6 Environment variables . 19

8.7 Dealing efficiently with filesystem images . 19

8.8 Graphing the dependencies between packages . 20

8.9 Graphing the build duration . 21

8.10 Integration with Eclipse . 21

8.11 Advanced usage . 22

8.11.1 Using the generated toolchain outside Buildroot . 22

8.11.2 Using gdb in Buildroot . 22

8.11.3 Using ccache in Buildroot . 22

8.11.4 Location of downloaded packages . 23

8.11.5 Package-specific make targets . 23

8.11.6 Using Buildroot during development . 24

9 Project-specific customization 26

9.1 Recommended directory structure . 26

9.1.1 Implementing layered customizations . 27

9.2 Keeping customizations outside of Buildroot . 28

9.3 Storing the Buildroot configuration . 29

9.4 Storing the configuration of other components . 29

9.5 Customizing the generated target filesystem . 30

9.5.1 Setting file permissions and ownership and adding custom devices nodes 31

9.6 Adding custom user accounts . 31

9.7 Customization after the images have been created . 31

9.8 Adding project-specific patches . 32

9.9 Adding project-specific packages . 32

9.10 Quick guide to storing your project-specific customizations . 33

10 Frequently Asked Questions & Troubleshooting 35

10.1 The boot hangs after Starting network. 35

10.2 Why is there no compiler on the target? . 35

10.3 Why are there no development files on the target? . 36

10.4 Why is there no documentation on the target? . 36

10.5 Why are some packages not visible in the Buildroot config menu? . 36

10.6 Why not use the target directory as a chroot directory? . 36

10.7 Why doesn’t Buildroot generate binary packages (.deb, .ipkg. . .)? . 36

11 Known issues 38

12 Legal notice and licensing 39

12.1 Complying with open source licenses . 39

12.2 License abbreviations . 40

12.3 Complying with the Buildroot license . 40

The Buildroot user manual iv

13 Beyond Buildroot 41

13.1 Boot the generated images . 41

13.1.1 NFS boot . 41

13.2 Chroot . 41

III Developer guide 42

14 How Buildroot works 43

15 Coding style 44

15.1 Config.in file . 44

15.2 The .mk file . 44

15.3 The documentation . 45

16 Adding support for a particular board 46

17 Adding new packages to Buildroot 47

17.1 Package directory . 47

17.2 Config.in file . 47

17.2.1 Choosing depends on or select . 47

17.2.2 Dependencies on target and toolchain options . 49

17.2.3 Dependencies on a Linux kernel built by buildroot . 51

17.2.4 Dependencies on udev /dev management . 51

17.2.5 Dependencies on features provided by virtual packages . 51

17.3 The .mk file . 51

17.4 The .hash file . 52

17.5 Infrastructure for packages with specific build systems . 53

17.5.1 generic-package tutorial . 53

17.5.2 generic-package reference . 54

17.6 Infrastructure for autotools-based packages . 58

17.6.1 autotools-package tutorial . 58

17.6.2 autotools-package reference . 58

17.7 Infrastructure for CMake-based packages . 60

17.7.1 cmake-package tutorial . 60

17.7.2 cmake-package reference . 60

17.8 Infrastructure for Python packages . 61

17.8.1 python-package tutorial . 61

17.8.2 python-package reference . 62

17.9 Infrastructure for LuaRocks-based packages . 63

17.9.1 luarocks-package tutorial . 63

The Buildroot user manual v

17.9.2 luarocks-package reference . 64

17.10Infrastructure for Perl/CPAN packages . 64

17.10.1 perl-package tutorial . 64

17.10.2 perl-package reference . 65

17.11Infrastructure for virtual packages . 66

17.11.1 virtual-package tutorial . 66

17.11.2 Virtual package’s Config.in file . 66

17.11.3 Virtual package’s .mk file . 66

17.11.4 Provider’s Config.in file . 67

17.11.5 Provider’s .mk file . 67

17.11.6 Notes on depending on a virtual package . 67

17.11.7 Notes on depending on a specific provider . 67

17.12Infrastructure for packages using kconfig for configuration files . 68

17.13Infrastructure for asciidoc documents . 69

17.13.1 asciidoc-document tutorial . 69

17.13.2 asciidoc-document reference . 69

17.14Hooks available in the various build steps . 70

17.14.1 Using the POST_RSYNC hook . 71

17.15Gettext integration and interaction with packages . 72

17.16Tips and tricks . 72

17.16.1 Package name, config entry name and makefile variable relationship . 72

17.16.2 How to add a package from GitHub . 73

17.17Conclusion . 73

18 Patching a package 74

18.1 Providing patches . 74

18.1.1 Downloaded . 74

18.1.2 Within Buildroot . 74

18.1.3 Global patch directory . 74

18.2 How patches are applied . 75

18.3 Format and licensing of the package patches . 75

18.4 Integrating patches found on the Web . 76

19 Download infrastructure 77

20 Debugging Buildroot 78

The Buildroot user manual vi

21 Contributing to Buildroot 79

21.1 Reproducing, analyzing and fixing bugs . 79

21.2 Analyzing and fixing autobuild failures . 79

21.3 Reviewing and testing patches . 80

21.3.1 Applying Patches from Patchwork . 81

21.4 Work on items from the TODO list . 81

21.5 Submitting patches . 81

21.5.1 Cover letter . 82

21.5.2 Patch revision changelog . 82

21.6 Reporting issues/bugs or getting help . 83

IV Appendix 84

22 Makedev syntax documentation 85

23 Makeusers syntax documentation 86

24 List of target packages available in Buildroot 88

25 List of virtual packages 113

26 List of host utilities available in Buildroot 114

27 Deprecated features 115

The Buildroot user manual vii

Buildroot 2014.11 manual generated on 2014-12-01 09:36:05 UTC from git revision 9a5434f

The Buildroot manual is written by the Buildroot developers. It is licensed under the GNU General Public License, version 2.
Refer to the COPYING file in the Buildroot sources for the full text of this license.

Copyright © 2004-2014 The Buildroot developers

logo.png

http://git.buildroot.org/buildroot/tree/COPYING

The Buildroot user manual 1 / 116

Part I

Getting started

The Buildroot user manual 2 / 116

Chapter 1

About Buildroot

Buildroot is a tool that simplifies and automates the process of building a complete Linux system for an embedded system, using
cross-compilation.

In order to achieve this, Buildroot is able to generate a cross-compilation toolchain, a root filesystem, a Linux kernel image and a
bootloader for your target. Buildroot can be used for any combination of these options, independently (you can for example use
an existing cross-compilation toolchain, and build only your root filesystem with Buildroot).

Buildroot is useful mainly for people working with embedded systems. Embedded systems often use processors that are not
the regular x86 processors everyone is used to having in his PC. They can be PowerPC processors, MIPS processors, ARM
processors, etc.

Buildroot supports numerous processors and their variants; it also comes with default configurations for several boards available
off-the-shelf. Besides this, a number of third-party projects are based on, or develop their BSP 1 or SDK 2 on top of Buildroot.

1 BSP: Board Support Package
2 SDK: Software Development Kit

The Buildroot user manual 3 / 116

Chapter 2

System requirements

Buildroot is designed to run on Linux systems.

While Buildroot itself will build most host packages it needs for the compilation, certain standard Linux utilities are expected
to be already installed on the host system. Below you will find an overview of the mandatory and optional packages (note that
package names may vary between distributions).

2.1 Mandatory packages

• Build tools:

– which

– sed

– make (version 3.81 or any later)

– binutils

– build-essential (only for Debian based systems)

– gcc (version 2.95 or any later)

– g++ (version 2.95 or any later)

– bash

– patch

– gzip

– bzip2

– perl (version 5.8.7 or any later)

– tar

– cpio

– python (version 2.6 or 2.7)

– unzip

– rsync

• Source fetching tools:

– wget

The Buildroot user manual 4 / 116

2.2 Optional packages

• Configuration interface dependencies:

For these libraries, you need to install both runtime and development data, which in many distributions are packaged separately.
The development packages typically have a -dev or -devel suffix.

– ncurses5 to use the menuconfig interface

– qt4 to use the xconfig interface

– glib2, gtk2 and glade2 to use the gconfig interface

• Source fetching tools:

In the official tree, most of the package sources are retrieved using wget from ftp, http or https locations. A few packages are
only available through a version control system. Moreover, Buildroot is capable of downloading sources via other tools, like
rsync or scp (refer to Chapter 19 for more details). If you enable packages using any of these methods, you will need to
install the corresponding tool on the host system:

– bazaar

– cvs

– git

– mercurial

– rsync

– scp

– subversion

• Java-related packages, if the Java Classpath needs to be built for the target system:

– The javac compiler

– The jar tool

• Documentation generation tools:

– asciidoc, version 8.6.3 or higher

– w3m

– python with the argparse module (automatically present in 2.7+ and 3.2+)

– dblatex (required for the pdf manual only)

• Graph generation tools:

– graphviz to use graph-depends and <pkg>-graph-depends

– python-matplotlib to use graph-build

The Buildroot user manual 5 / 116

Chapter 3

Getting Buildroot

Buildroot releases are made every 3 months, in February, May, August and November. Release numbers are in the format
YYYY.MM, so for example 2013.02, 2014.08.

Release tarballs are available at http://buildroot.org/downloads/.

If you want to follow development, you can use the daily snapshots or make a clone of the Git repository. Refer to the Download
page of the Buildroot website for more details.

http://buildroot.org/downloads/
http://buildroot.org/download
http://buildroot.org/download

The Buildroot user manual 6 / 116

Chapter 4

Buildroot quick start

Important: you can and should build everything as a normal user. There is no need to be root to configure and use Buildroot.
By running all commands as a regular user, you protect your system against packages behaving badly during compilation and
installation.

The first step when using Buildroot is to create a configuration. Buildroot has a nice configuration tool similar to the one you can
find in the Linux kernel or in BusyBox.

From the buildroot directory, run

$ make menuconfig

for the original curses-based configurator, or

$ make nconfig

for the new curses-based configurator, or

$ make xconfig

for the Qt-based configurator, or

$ make gconfig

for the GTK-based configurator.

All of these "make" commands will need to build a configuration utility (including the interface), so you may need to install
"development" packages for relevant libraries used by the configuration utilities. Refer to Chapter 2 for more details, specifically
the optional requirements Section 2.2 to get the dependencies of your favorite interface.

For each menu entry in the configuration tool, you can find associated help that describes the purpose of the entry. Refer to
Chapter 6 for details on some specific configuration aspects.

Once everything is configured, the configuration tool generates a .config file that contains the entire configuration. This file
will be read by the top-level Makefile.

To start the build process, simply run:

$ make

You should never use make -jN with Buildroot: top-level parallel make is currently not supported. Instead, use the BR2_JL
EVEL option to tell Buildroot to run the compilation of each individual package with make -jN.

The make command will generally perform the following steps:

• download source files (as required);

http://www.kernel.org/
http://www.busybox.net/

The Buildroot user manual 7 / 116

• configure, build and install the cross-compilation toolchain, or simply import an external toolchain;

• configure, build and install selected target packages;

• build a kernel image, if selected;

• build a bootloader image, if selected;

• create a root filesystem in selected formats.

Buildroot output is stored in a single directory, output/. This directory contains several subdirectories:

• images/ where all the images (kernel image, bootloader and root filesystem images) are stored. These are the files you need
to put on your target system.

• build/ where all the components are built (this includes tools needed by Buildroot on the host and packages compiled for
the target). This directory contains one subdirectory for each of these components.

• staging/ which contains a hierarchy similar to a root filesystem hierarchy. This directory contains the headers and libraries
of the cross-compilation toolchain and all the userspace packages selected for the target. However, this directory is not intended
to be the root filesystem for the target: it contains a lot of development files, unstripped binaries and libraries that make it far
too big for an embedded system. These development files are used to compile libraries and applications for the target that
depend on other libraries.

• target/ which contains almost the complete root filesystem for the target: everything needed is present except the device
files in /dev/ (Buildroot can’t create them because Buildroot doesn’t run as root and doesn’t want to run as root). Also, it
doesn’t have the correct permissions (e.g. setuid for the busybox binary). Therefore, this directory should not be used on
your target. Instead, you should use one of the images built in the images/ directory. If you need an extracted image of
the root filesystem for booting over NFS, then use the tarball image generated in images/ and extract it as root. Compared
to staging/, target/ contains only the files and libraries needed to run the selected target applications: the development
files (headers, etc.) are not present, the binaries are stripped.

• host/ contains the installation of tools compiled for the host that are needed for the proper execution of Buildroot, including
the cross-compilation toolchain.

These commands, make menuconfig|nconfig|gconfig|xconfig and make, are the basic ones that allow to easily
and quickly generate images fitting your needs, with all the features and applications you enabled.

More details about the "make" command usage are given in Section 8.1.

The Buildroot user manual 8 / 116

Chapter 5

Community resources

Like any open source project, Buildroot has different ways to share information in its community and outside.

Each of those ways may interest you if you are looking for some help, want to understand Buildroot or contribute to the project.

Mailing List
Buildroot has a mailing list for discussion and development. It is the main method of interaction for Buildroot users and
developers.

Only subscribers to the Buildroot mailing list are allowed to post to this list. You can subscribe via the mailing list info
page.

Mails that are sent to the mailing list are also available in the mailing list archives and via Gmane, at gmane.comp.
lib.uclibc.buildroot. Please search the mailing list archives before asking questions, since there is a good chance
someone else has asked the same question before.

IRC
The Buildroot IRC channel #buildroot is hosted on Freenode. It is a useful place to ask quick questions or discuss on
certain topics.

When asking for help on IRC, share relevant logs or pieces of code using a code sharing website, such as http://code.bulix.org.

Note that for certain questions, posting to the mailing list may be better as it will reach more people, both developers and
users.

Bug tracker
Bugs in Buildroot can be reported via the mailing list or alternatively via the Buildroot bugtracker. Please refer to Sec-
tion 21.6 before creating a bug report.

Wiki
The Buildroot wiki page is hosted on the eLinux wiki. It contains some useful links, an overview of past and upcoming
events, and a TODO list.

Patchwork
Patchwork is a web-based patch tracking system designed to facilitate the contribution and management of contributions to
an open-source project. Patches that have been sent to a mailing list are ’caught’ by the system, and appear on a web page.
Any comments posted that reference the patch are appended to the patch page too. For more information on Patchwork
see http://jk.ozlabs.org/projects/patchwork/.

Buildroot’s Patchwork website is mainly for use by Buildroot’s maintainer to ensure patches aren’t missed. It is also used
by Buildroot patch reviewers (see also Section 21.3.1). However, since the website exposes patches and their corresponding
review comments in a clean and concise web interface, it can be useful for all Buildroot developers.

The Buildroot patch management interface is available at http://patchwork.buildroot.org.

http://lists.busybox.net/mailman/listinfo/buildroot
http://lists.busybox.net/mailman/listinfo/buildroot
http://lists.busybox.net/pipermail/buildroot
http://gmane.org
http://dir.gmane.org/gmane.comp.lib.uclibc.buildroot
http://dir.gmane.org/gmane.comp.lib.uclibc.buildroot
irc://freenode.net/#buildroot
http://webchat.freenode.net
http://code.bulix.org
https://bugs.busybox.net/buglist.cgi?product=buildroot
http://elinux.org/Buildroot
http://elinux.org
http://jk.ozlabs.org/projects/patchwork/
http://patchwork.buildroot.org

The Buildroot user manual 9 / 116

Part II

User guide

The Buildroot user manual 10 / 116

Chapter 6

Buildroot configuration

All the configuration options in make *config have a help text providing details about the option.

The make *config commands also offer a search tool. Read the help message in the different frontend menus to know how
to use it:

• in menuconfig, the search tool is called by pressing /;

• in xconfig, the search tool is called by pressing Ctrl + f.

The result of the search shows the help message of the matching items. In menuconfig, numbers in the left column provide a
shortcut to the corresponding entry. Just type this number to directly jump to the entry, or to the containing menu in case the
entry is not selectable due to a missing dependency.

Although the menu structure and the help text of the entries should be sufficiently self-explanatory, a number of topics require
additional explanation that cannot easily be covered in the help text and are therefore covered in the following sections.

6.1 Cross-compilation toolchain

A compilation toolchain is the set of tools that allows you to compile code for your system. It consists of a compiler (in our case,
gcc), binary utils like assembler and linker (in our case, binutils) and a C standard library (for example GNU Libc, uClibc).

The system installed on your development station certainly already has a compilation toolchain that you can use to compile an
application that runs on your system. If you’re using a PC, your compilation toolchain runs on an x86 processor and generates
code for an x86 processor. Under most Linux systems, the compilation toolchain uses the GNU libc (glibc) as the C standard
library. This compilation toolchain is called the "host compilation toolchain". The machine on which it is running, and on which
you’re working, is called the "host system" 1.

The compilation toolchain is provided by your distribution, and Buildroot has nothing to do with it (other than using it to build a
cross-compilation toolchain and other tools that are run on the development host).

As said above, the compilation toolchain that comes with your system runs on and generates code for the processor in your host
system. As your embedded system has a different processor, you need a cross-compilation toolchain - a compilation toolchain
that runs on your host system but generates code for your target system (and target processor). For example, if your host system
uses x86 and your target system uses ARM, the regular compilation toolchain on your host runs on x86 and generates code for
x86, while the cross-compilation toolchain runs on x86 and generates code for ARM.

Buildroot provides two solutions for the cross-compilation toolchain:

• The internal toolchain backend, called Buildroot toolchain in the configuration interface.

1 This terminology differs from what is used by GNU configure, where the host is the machine on which the application will run (which is usually the same
as target)

http://www.gnu.org/software/libc/libc.html
http://www.uclibc.org/

The Buildroot user manual 11 / 116

• The external toolchain backend, called External toolchain in the configuration interface.

The choice between these two solutions is done using the Toolchain Type option in the Toolchain menu. Once one
solution has been chosen, a number of configuration options appear, they are detailed in the following sections.

6.1.1 Internal toolchain backend

The internal toolchain backend is the backend where Buildroot builds by itself a cross-compilation toolchain, before building the
userspace applications and libraries for your target embedded system.

This backend supports several C libraries: uClibc, the glibc and eglibc.

Once you have selected this backend, a number of options appear. The most important ones allow to:

• Change the version of the Linux kernel headers used to build the toolchain. This item deserves a few explanations. In the
process of building a cross-compilation toolchain, the C library is being built. This library provides the interface between
userspace applications and the Linux kernel. In order to know how to "talk" to the Linux kernel, the C library needs to have
access to the Linux kernel headers (i.e. the .h files from the kernel), which define the interface between userspace and the
kernel (system calls, data structures, etc.). Since this interface is backward compatible, the version of the Linux kernel headers
used to build your toolchain do not need to match exactly the version of the Linux kernel you intend to run on your embedded
system. They only need to have a version equal or older to the version of the Linux kernel you intend to run. If you use
kernel headers that are more recent than the Linux kernel you run on your embedded system, then the C library might be using
interfaces that are not provided by your Linux kernel.

• Change the version of the GCC compiler, binutils and the C library.

• Select a number of toolchain options (uClibc only): whether the toolchain should have largefile support (i.e. support for files
larger than 2 GB on 32 bits systems), IPv6 support, RPC support (used mainly for NFS), wide-char support, locale support
(for internationalization), C++ support or thread support. Depending on which options you choose, the number of userspace
applications and libraries visible in Buildroot menus will change: many applications and libraries require certain toolchain
options to be enabled. Most packages show a comment when a certain toolchain option is required to be able to enable
those packages. If needed, you can further refine the uClibc configuration by running make uclibc-menuconfig. Note
however that all packages in Buildroot are tested against the default uClibc configuration bundled in Buildroot: if you deviate
from this configuration by removing features from uClibc, some packages may no longer build.

It is worth noting that whenever one of those options is modified, then the entire toolchain and system must be rebuilt. See
Section 8.2.

Advantages of this backend:

• Well integrated with Buildroot

• Fast, only builds what’s necessary

Drawbacks of this backend:

• Rebuilding the toolchain is needed when doing make clean, which takes time. If you’re trying to reduce your build time,
consider using the External toolchain backend.

6.1.2 External toolchain backend

The external toolchain backend allows to use existing pre-built cross-compilation toolchains. Buildroot knows about a number
of well-known cross-compilation toolchains (from Linaro for ARM, Sourcery CodeBench for ARM, x86, x86-64, PowerPC,
MIPS and SuperH, Blackfin toolchains from Analog Devices, etc.) and is capable of downloading them automatically, or it can
be pointed to a custom toolchain, either available for download or installed locally.

Then, you have three solutions to use an external toolchain:

http://www.uclibc.org
http://www.gnu.org/software/libc/libc.html
http://www.eglibc.org
http://www.linaro.org
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
https://blackfin.uclinux.org/gf/project/toolchain

The Buildroot user manual 12 / 116

• Use a predefined external toolchain profile, and let Buildroot download, extract and install the toolchain. Buildroot already
knows about a few CodeSourcery, Linaro, Blackfin and Xilinx toolchains. Just select the toolchain profile in Toolchain
from the available ones. This is definitely the easiest solution.

• Use a predefined external toolchain profile, but instead of having Buildroot download and extract the toolchain, you can tell
Buildroot where your toolchain is already installed on your system. Just select the toolchain profile in Toolchain through
the available ones, unselect Download toolchain automatically, and fill the Toolchain path text entry with
the path to your cross-compiling toolchain.

• Use a completely custom external toolchain. This is particularly useful for toolchains generated using crosstool-NG or with
Buildroot itself. To do this, select the Custom toolchain solution in the Toolchain list. You need to fill the Toolch
ain path, Toolchain prefix and External toolchain C library options. Then, you have to tell Buildroot
what your external toolchain supports. If your external toolchain uses the glibc library, you only have to tell whether your
toolchain supports C++ or not and whether it has built-in RPC support. If your external toolchain uses the uClibc library, then
you have to tell Buildroot if it supports largefile, IPv6, RPC, wide-char, locale, program invocation, threads and C++. At the
beginning of the execution, Buildroot will tell you if the selected options do not match the toolchain configuration.

Our external toolchain support has been tested with toolchains from CodeSourcery and Linaro, toolchains generated by crosstool-
NG, and toolchains generated by Buildroot itself. In general, all toolchains that support the sysroot feature should work. If not,
do not hesitate to contact the developers.

We do not support toolchains or SDK generated by OpenEmbedded or Yocto, because these toolchains are not pure toolchains (i.e.
just the compiler, binutils, the C and C++ libraries). Instead these toolchains come with a very large set of pre-compiled libraries
and programs. Therefore, Buildroot cannot import the sysroot of the toolchain, as it would contain hundreds of megabytes of
pre-compiled libraries that are normally built by Buildroot.

We also do not support using the distribution toolchain (i.e. the gcc/binutils/C library installed by your distribution) as the
toolchain to build software for the target. This is because your distribution toolchain is not a "pure" toolchain (i.e. only with the
C/C++ library), so we cannot import it properly into the Buildroot build environment. So even if you are building a system for a
x86 or x86_64 target, you have to generate a cross-compilation toolchain with Buildroot or crosstool-NG.

If you want to generate a custom toolchain for your project, that can be used as an external toolchain in Buildroot, our recom-
mendation is definitely to build it with crosstool-NG. We recommend to build the toolchain separately from Buildroot, and then
import it in Buildroot using the external toolchain backend.

Advantages of this backend:

• Allows to use well-known and well-tested cross-compilation toolchains.

• Avoids the build time of the cross-compilation toolchain, which is often very significant in the overall build time of an embed-
ded Linux system.

• Not limited to uClibc: glibc and eglibc toolchains are supported.

Drawbacks of this backend:

• If your pre-built external toolchain has a bug, may be hard to get a fix from the toolchain vendor, unless you build your external
toolchain by yourself using Crosstool-NG.

6.1.2.1 External toolchain wrapper

When using an external toolchain, Buildroot generates a wrapper program, that transparently passes the appropriate options
(according to the configuration) to the external toolchain programs. In case you need to debug this wrapper to check exactly what
arguments are passed, you can set the environment variable BR2_DEBUG_WRAPPER to either one of:

• 0, empty or not set: no debug

• 1: trace all arguments on a single line

• 2: trace one argument per line

http://crosstool-ng.org
http://crosstool-ng.org
http://crosstool-ng.org

The Buildroot user manual 13 / 116

6.2 /dev management

On a Linux system, the /dev directory contains special files, called device files, that allow userspace applications to access the
hardware devices managed by the Linux kernel. Without these device files, your userspace applications would not be able to use
the hardware devices, even if they are properly recognized by the Linux kernel.

Under System configuration, /dev management, Buildroot offers four different solutions to handle the /dev direc-
tory :

• The first solution is Static using device table. This is the old classical way of handling device files in Linux. With this method,
the device files are persistently stored in the root filesystem (i.e. they persist across reboots), and there is nothing that will
automatically create and remove those device files when hardware devices are added or removed from the system. Buildroot
therefore creates a standard set of device files using a device table, the default one being stored in system/device_table
_dev.txt in the Buildroot source code. This file is processed when Buildroot generates the final root filesystem image, and
the device files are therefore not visible in the output/target directory. The BR2_ROOTFS_STATIC_DEVICE_TABLE
option allows to change the default device table used by Buildroot, or to add an additional device table, so that additional device
files are created by Buildroot during the build. So, if you use this method, and a device file is missing in your system, you
can for example create a board/<yourcompany>/<yourproject>/device_table_dev.txt file that contains the
description of your additional device files, and then you can set BR2_ROOTFS_STATIC_DEVICE_TABLE to system/dev
ice_table_dev.txt board/<yourcompany>/<yourproject>/device_table_dev.txt. For more details
about the format of the device table file, see Chapter 22.

• The second solution is Dynamic using devtmpfs only. devtmpfs is a virtual filesystem inside the Linux kernel that has been
introduced in kernel 2.6.32 (if you use an older kernel, it is not possible to use this option). When mounted in /dev, this
virtual filesystem will automatically make device files appear and disappear as hardware devices are added and removed from
the system. This filesystem is not persistent across reboots: it is filled dynamically by the kernel. Using devtmpfs requires
the following kernel configuration options to be enabled: CONFIG_DEVTMPFS and CONFIG_DEVTMPFS_MOUNT. When
Buildroot is in charge of building the Linux kernel for your embedded device, it makes sure that those two options are enabled.
However, if you build your Linux kernel outside of Buildroot, then it is your responsibility to enable those two options (if you
fail to do so, your Buildroot system will not boot).

• The third solution is Dynamic using mdev. This method also relies on the devtmpfs virtual filesystem detailed above (so the
requirement to have CONFIG_DEVTMPFS and CONFIG_DEVTMPFS_MOUNT enabled in the kernel configuration still apply),
but adds the mdev userspace utility on top of it. mdev is a program part of BusyBox that the kernel will call every time a
device is added or removed. Thanks to the /etc/mdev.conf configuration file, mdev can be configured to for example,
set specific permissions or ownership on a device file, call a script or application whenever a device appears or disappear, etc.
Basically, it allows userspace to react on device addition and removal events. mdev can for example be used to automatically
load kernel modules when devices appear on the system. mdev is also important if you have devices that require a firmware,
as it will be responsible for pushing the firmware contents to the kernel. mdev is a lightweight implementation (with fewer
features) of udev. For more details about mdev and the syntax of its configuration file, see http://git.busybox.net/busybox/-
tree/docs/mdev.txt.

• The fourth solution is Dynamic using eudev. This method also relies on the devtmpfs virtual filesystem detailed above, but
adds the eudev userspace daemon on top of it. eudev is a daemon that runs in the background, and gets called by the kernel
when a device gets added or removed from the system. It is a more heavyweight solution than mdev, but provides higher
flexibility. eudev is a standalone version of udev, the original userspace daemon used in most desktop Linux distributions,
which is now part of Systemd. For more details, see http://en.wikipedia.org/wiki/Udev.

The Buildroot developers recommendation is to start with the Dynamic using devtmpfs only solution, until you have the need
for userspace to be notified when devices are added/removed, or if firmwares are needed, in which case Dynamic using mdev is
usually a good solution.

Note that if systemd is chosen as init system, /dev management will be performed by the udev program provided by systemd.

6.3 init system

The init program is the first userspace program started by the kernel (it carries the PID number 1), and is responsible for starting
the userspace services and programs (for example: web server, graphical applications, other network servers, etc.).

http://git.busybox.net/busybox/tree/docs/mdev.txt
http://git.busybox.net/busybox/tree/docs/mdev.txt
http://en.wikipedia.org/wiki/Udev

The Buildroot user manual 14 / 116

Buildroot allows to use three different types of init systems, which can be chosen from System configuration, Init
system:

• The first solution is BusyBox. Amongst many programs, BusyBox has an implementation of a basic init program, which
is sufficient for most embedded systems. Enabling the BR2_INIT_BUSYBOX will ensure BusyBox will build and install its
init program. This is the default solution in Buildroot. The BusyBox init program will read the /etc/inittab file
at boot to know what to do. The syntax of this file can be found in http://git.busybox.net/busybox/tree/examples/inittab (note
that BusyBox inittab syntax is special: do not use a random inittab documentation from the Internet to learn about
BusyBox inittab). The default inittab in Buildroot is stored in system/skeleton/etc/inittab. Apart from
mounting a few important filesystems, the main job the default inittab does is to start the /etc/init.d/rcS shell script,
and start a getty program (which provides a login prompt).

• The second solution is systemV. This solution uses the old traditional sysvinit program, packed in Buildroot in package/
sysvinit. This was the solution used in most desktop Linux distributions, until they switched to more recent alternatives
such as Upstart or Systemd. sysvinit also works with an inittab file (which has a slightly different syntax than the one
from BusyBox). The default inittab installed with this init solution is located in package/sysvinit/inittab.

• The third solution is systemd. systemd is the new generation init system for Linux. It does far more than traditional init
programs: aggressive parallelization capabilities, uses socket and D-Bus activation for starting services, offers on-demand
starting of daemons, keeps track of processes using Linux control groups, supports snapshotting and restoring of the system
state, etc. systemd will be useful on relatively complex embedded systems, for example the ones requiring D-Bus and
services communicating between each other. It is worth noting that systemd brings a fairly big number of large dependencies:
dbus, udev and more. For more details about systemd, see http://www.freedesktop.org/wiki/Software/systemd.

The solution recommended by Buildroot developers is to use the BusyBox init as it is sufficient for most embedded systems.
systemd can be used for more complex situations.

http://git.busybox.net/busybox/tree/examples/inittab
http://www.freedesktop.org/wiki/Software/systemd

The Buildroot user manual 15 / 116

Chapter 7

Configuration of other components

Before attempting to modify any of the components below, make sure you have already configured Buildroot itself, and have
enabled the corresponding package.

BusyBox
If you already have a BusyBox configuration file, you can directly specify this file in the Buildroot configuration, using
BR2_PACKAGE_BUSYBOX_CONFIG. Otherwise, Buildroot will start from a default BusyBox configuration file.

To make subsequent changes to the configuration, use make busybox-menuconfig to open the BusyBox configura-
tion editor.

It is also possible to specify a BusyBox configuration file through an environment variable, although this is not recom-
mended. Refer to Section 8.6 for more details.

uClibc
Configuration of uClibc is done in the same way as for BusyBox. The configuration variable to specify an existing
configuration file is BR2_UCLIBC_CONFIG. The command to make subsequent changes is make uclibc-menucon
fig.

Linux kernel
If you already have a kernel configuration file, you can directly specify this file in the Buildroot configuration, using
BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG.

If you do not yet have a kernel configuration file, you can either start by specifying a defconfig in the Buildroot config-
uration, using BR2_LINUX_KERNEL_USE_DEFCONFIG, or start by creating an empty file and specifying it as custom
configuration file, using BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG.

To make subsequent changes to the configuration, use make linux-menuconfig to open the Linux configuration
editor.

Barebox
Configuration of Barebox is done in the same way as for the Linux kernel. The corresponding configuration variables
are BR2_TARGET_BAREBOX_USE_CUSTOM_CONFIG and BR2_TARGET_BAREBOX_USE_DEFCONFIG. To open
the configuration editor, use make barebox-menuconfig.

The Buildroot user manual 16 / 116

Chapter 8

General Buildroot usage

8.1 make tips

This is a collection of tips that help you make the most of Buildroot.

Display all commands executed by make:

$ make V=1 <target>

Display all available targets:

$ make help

Not all targets are always available, some settings in the .config file may hide some targets:

• busybox-menuconfig only works when busybox is enabled;

• linux-menuconfig and linux-savedefconfig only work when linux is enabled;

• uclibc-menuconfig is only available when the uClibc C library is selected in the internal toolchain backend;

• barebox-menuconfig and barebox-savedefconfig only work when the barebox bootloader is enabled.

Cleaning: Explicit cleaning is required when any of the architecture or toolchain configuration options are changed.

To delete all build products (including build directories, host, staging and target trees, the images and the toolchain):

$ make clean

Generating the manual: The present manual sources are located in the docs/manual directory. To generate the manual:

$ make manual-clean
$ make manual

The manual outputs will be generated in output/docs/manual.

NOTES

• A few tools are required to build the documentation (see: Section 2.2).

Resetting Buildroot for a new target: To delete all build products as well as the configuration:

$ make distclean

Notes If ccache is enabled, running make clean or distclean does not empty the compiler cache used by Buildroot. To
delete it, refer to Section 8.11.3.

The Buildroot user manual 17 / 116

8.2 Understanding when a full rebuild is necessary

Buildroot does not attempt to detect what parts of the system should be rebuilt when the system configuration is changed through
make menuconfig, make xconfig or one of the other configuration tools. In some cases, Buildroot should rebuild the
entire system, in some cases, only a specific subset of packages. But detecting this in a completely reliable manner is very
difficult, and therefore the Buildroot developers have decided to simply not attempt to do this.

Instead, it is the responsibility of the user to know when a full rebuild is necessary. As a hint, here are a few rules of thumb that
can help you understand how to work with Buildroot:

• When the target architecture configuration is changed, a complete rebuild is needed. Changing the architecture variant, the
binary format or the floating point strategy for example has an impact on the entire system.

• When the toolchain configuration is changed, a complete rebuild generally is needed. Changing the toolchain configuration
often involves changing the compiler version, the type of C library or its configuration, or some other fundamental configuration
item, and these changes have an impact on the entire system.

• When an additional package is added to the configuration, a full rebuild is not necessarily needed. Buildroot will detect that
this package has never been built, and will build it. However, if this package is a library that can optionally be used by packages
that have already been built, Buildroot will not automatically rebuild those. Either you know which packages should be rebuilt,
and you can rebuild them manually, or you should do a full rebuild. For example, let’s suppose you have built a system with
the ctorrent package, but without openssl. Your system works, but you realize you would like to have SSL support in
ctorrent, so you enable the openssl package in Buildroot configuration and restart the build. Buildroot will detect that
openssl should be built and will be build it, but it will not detect that ctorrent should be rebuilt to benefit from openssl
to add OpenSSL support. You will either have to do a full rebuild, or rebuild ctorrent itself.

• When a package is removed from the configuration, Buildroot does not do anything special. It does not remove the files
installed by this package from the target root filesystem or from the toolchain sysroot. A full rebuild is needed to get rid of
this package. However, generally you don’t necessarily need this package to be removed right now: you can wait for the next
lunch break to restart the build from scratch.

• When the sub-options of a package are changed, the package is not automatically rebuilt. After making such changes, rebuild-
ing only this package is often sufficient, unless enabling the package sub-option adds some features to the package that are
useful for another package which has already been built. Again, Buildroot does not track when a package should be rebuilt:
once a package has been built, it is never rebuilt unless explicitly told to do so.

• When a change to the root filesystem skeleton is made, a full rebuild is needed. However, when changes to the root filesystem
overlay, a post-build script or a post-image script are made, there is no need for a full rebuild: a simple make invocation will
take the changes into account.

Generally speaking, when you’re facing a build error and you’re unsure of the potential consequences of the configuration changes
you’ve made, do a full rebuild. If you get the same build error, then you are sure that the error is not related to partial rebuilds
of packages, and if this error occurs with packages from the official Buildroot, do not hesitate to report the problem! As your
experience with Buildroot progresses, you will progressively learn when a full rebuild is really necessary, and you will save more
and more time.

For reference, a full rebuild is achieved by running:

$ make clean all

8.3 Understanding how to rebuild packages

One of the most common questions asked by Buildroot users is how to rebuild a given package or how to remove a package
without rebuilding everything from scratch.

Removing a package is unsupported by Buildroot without rebuilding from scratch. This is because Buildroot doesn’t keep track
of which package installs what files in the output/staging and output/target directories, or which package would be
compiled differently depending on the availability of another package.

The Buildroot user manual 18 / 116

The easiest way to rebuild a single package from scratch is to remove its build directory in output/build. Buildroot will
then re-extract, re-configure, re-compile and re-install this package from scratch. You can ask buildroot to do this with the make
<package>-dirclean command.

On the other hand, if you only want to restart the build process of a package from its compilation step, you can run make
<package>-rebuild, followed by make or make <package>. It will restart the compilation and installation of the
package, but not from scratch: it basically re-executes make and make install inside the package, so it will only rebuild
files that changed.

If you want to restart the build process of a package from its configuration step, you can run make <package>-reconfig
ure, followed by make or make <package>. It will restart the configuration, compilation and installation of the package.

Internally, Buildroot creates so-called stamp files to keep track of which build steps have been completed for each package. They
are stored in the package build directory, output/build/<package>-<version>/ and are named .stamp_<step-
name>. The commands detailed above simply manipulate these stamp files to force Buildroot to restart a specific set of steps of
a package build process.

Further details about package special make targets are explained in Section 8.11.5.

8.4 Offline builds

If you intend to do an offline build and just want to download all sources that you previously selected in the configurator
(menuconfig, nconfig, xconfig or gconfig), then issue:

$ make source

You can now disconnect or copy the content of your dl directory to the build-host.

8.5 Building out-of-tree

As default, everything built by Buildroot is stored in the directory output in the Buildroot tree.

Buildroot also supports building out of tree with a syntax similar to the Linux kernel. To use it, add O=<directory> to the
make command line:

$ make O=/tmp/build

Or:

$ cd /tmp/build; make O=$PWD -C path/to/buildroot

All the output files will be located under /tmp/build. If the O path does not exist, Buildroot will create it.

Note: the O path can be either an absolute or a relative path, but if it’s passed as a relative path, it is important to note that it is
interpreted relative to the main Buildroot source directory, not the current working directory.

When using out-of-tree builds, the Buildroot .config and temporary files are also stored in the output directory. This means
that you can safely run multiple builds in parallel using the same source tree as long as they use unique output directories.

For ease of use, Buildroot generates a Makefile wrapper in the output directory - so after the first run, you no longer need to pass
O=<...> and -C <...>, simply run (in the output directory):

$ make <target>

The Buildroot user manual 19 / 116

8.6 Environment variables

Buildroot also honors some environment variables, when they are passed to make or set in the environment:

• HOSTCXX, the host C++ compiler to use

• HOSTCC, the host C compiler to use

• UCLIBC_CONFIG_FILE=<path/to/.config>, path to the uClibc configuration file, used to compile uClibc, if an in-
ternal toolchain is being built.
Note that the uClibc configuration file can also be set from the configuration interface, so through the Buildroot .config file;
this is the recommended way of setting it.

• BUSYBOX_CONFIG_FILE=<path/to/.config>, path to the BusyBox configuration file.
Note that the BusyBox configuration file can also be set from the configuration interface, so through the Buildroot .config
file; this is the recommended way of setting it.

• BR2_DL_DIR to override the directory in which Buildroot stores/retrieves downloaded files
Note that the Buildroot download directory can also be set from the configuration interface, so through the Buildroot .config
file; this is the recommended way of setting it.

• BR2_GRAPH_ALT, if set and non-empty, to use an alternate color-scheme in build-time graphs

• BR2_GRAPH_OUT to set the filetype of generated graphs, either pdf (the default), or png.

• BR2_GRAPH_DEPS_OPTS to pass extra options to the dependency graph; see [?simpara] for the accepted options

• BR2_GRAPH_DOT_OPTS is passed verbatim as options to the dot utility to draw the dependency graph.

An example that uses config files located in the toplevel directory and in your $HOME:

$ make UCLIBC_CONFIG_FILE=uClibc.config BUSYBOX_CONFIG_FILE=$HOME/bb.config

If you want to use a compiler other than the default gcc or g++ for building helper-binaries on your host, then do

$ make HOSTCXX=g++-4.3-HEAD HOSTCC=gcc-4.3-HEAD

8.7 Dealing efficiently with filesystem images

Filesystem images can get pretty big, depending on the filesystem you choose, the number of packages, whether you provisioned
free space. . . Yet, some locations in the filesystems images may just be empty (e.g. a long run of zeroes); such a file is called a
sparse file.

Most tools can handle sparse files efficiently, and will only store or write those parts of a sparse file that are not empty.

For example:

• tar accepts the -S option to tell it to only store non-zero blocks of sparse files:

– tar cf archive.tar -S [files...] will efficiently store sparse files in a tarball

– tar xf archive.tar -S will efficiently store sparse files extracted from a tarball

• cp accepts the --sparse=WHEN option (WHEN is one of auto, never or always):

– cp --sparse=always source.file dest.file will make dest.file a sparse file if source.file has
long runs of zeroes

The Buildroot user manual 20 / 116

Other tools may have similar options. Please consult their respective man pages.

You can use sparse files if you need to store the filesystem images (e.g. to transfer from one machine to another), or if you need
to send them (e.g. to the Q&A team).

Note however that flashing a filesystem image to a device while using the sparse mode of dd may result in a broken filesystem
(e.g. the block bitmap of an ext2 filesystem may be corrupted; or, if you have sparse files in your filesystem, those parts may not
be all-zeroes when read back). You should only use sparse files when handling files on the build machine, not when transferring
them to an actual device that will be used on the target.

8.8 Graphing the dependencies between packages

One of Buildroot’s jobs is to know the dependencies between packages, and make sure they are built in the right order. These
dependencies can sometimes be quite complicated, and for a given system, it is often not easy to understand why such or such
package was brought into the build by Buildroot.

In order to help understanding the dependencies, and therefore better understand what is the role of the different components in
your embedded Linux system, Buildroot is capable of generating dependency graphs.

To generate a dependency graph of the full system you have compiled, simply run:

make graph-depends

You will find the generated graph in output/graphs/graph-depends.pdf.

If your system is quite large, the dependency graph may be too complex and difficult to read. It is therefore possible to generate
the dependency graph just for a given package:

make <pkg>-graph-depends

You will find the generated graph in output/graph/<pkg>-graph-depends.pdf.

Note that the dependency graphs are generated using the dot tool from the Graphviz project, which you must have installed on
your system to use this feature. In most distributions, it is available as the graphviz package.

By default, the dependency graphs are generated in the PDF format. However, by passing the BR2_GRAPH_OUT environment
variable, you can switch to other output formats, such as PNG, PostScript or SVG. All formats supported by the -T option of the
dot tool are supported.

BR2_GRAPH_OUT=svg make graph-depends

The graph-depends behaviour can be controlled by setting options in the BR2_GRAPH_DEPS_OPTS environment variable.
The accepted options are:

• --depth N, -d N, to limit the dependency depth to N levels. The default, 0, means no limit.

• --transitive, --no-transitive, to draw (or not) the transitive dependencies. The default is to not draw transitive
dependencies.

• --colours R,T,H, the comma-separated list of colours to draw the root package (R), the target packages (T) and the host
packages (H). Defaults to: lightblue,grey,gainsboro

BR2_GRAPH_DEPS_OPTS=’-d 3 --no-transitive --colours=red,green,blue’ make graph-depends

The Buildroot user manual 21 / 116

8.9 Graphing the build duration

When the build of a system takes a long time, it is sometimes useful to be able to understand which packages are the longest to
build, to see if anything can be done to speed up the build. In order to help such build time analysis, Buildroot collects the build
time of each step of each package, and allows to generate graphs from this data.

To generate the build time graph after a build, run:

make graph-build

This will generate a set of files in output/graphs :

• build.hist-build.pdf, a histogram of the build time for each package, ordered in the build order.

• build.hist-duration.pdf, a histogram of the build time for each package, ordered by duration (longest first)

• build.hist-name.pdf, a histogram of the build time for each package, order by package name.

• build.pie-packages.pdf, a pie chart of the build time per package

• build.pie-steps.pdf, a pie chart of the global time spent in each step of the packages build process.

This graph-build target requires the Python Matplotlib and Numpy libraries to be installed (python-matplotlib and
python-numpy on most distributions), and also the argparse module if you’re using a Python version older than 2.7 (pyt
hon-argparse on most distributions).

By default, the output format for the graph is PDF, but a different format can be selected using the BR2_GRAPH_OUT environ-
ment variable. The only other format supported is PNG:

BR2_GRAPH_OUT=png make graph-build

8.10 Integration with Eclipse

While a part of the embedded Linux developers like classical text editors like Vim or Emacs, and command-line based interfaces,
a number of other embedded Linux developers like richer graphical interfaces to do their development work. Eclipse being one
of the most popular Integrated Development Environment, Buildroot integrates with Eclipse in order to ease the development
work of Eclipse users.

Our integration with Eclipse simplifies the compilation, remote execution and remote debugging of applications and libraries
that are built on top of a Buildroot system. It does not integrate the Buildroot configuration and build processes themselves with
Eclipse. Therefore, the typical usage model of our Eclipse integration would be:

• Configure your Buildroot system with make menuconfig, make xconfig or any other configuration interface provided
with Buildroot.

• Build your Buildroot system by running make.

• Start Eclipse to develop, execute and debug your own custom applications and libraries, that will rely on the libraries built and
installed by Buildroot.

The Buildroot Eclipse integration installation process and usage is described in detail at https://github.com/mbats/eclipse-buildroot-
bundle/wiki.

https://github.com/mbats/eclipse-buildroot-bundle/wiki
https://github.com/mbats/eclipse-buildroot-bundle/wiki

The Buildroot user manual 22 / 116

8.11 Advanced usage

8.11.1 Using the generated toolchain outside Buildroot

You may want to compile, for your target, your own programs or other software that are not packaged in Buildroot. In order to
do this you can use the toolchain that was generated by Buildroot.

The toolchain generated by Buildroot is located by default in output/host/. The simplest way to use it is to add out
put/host/usr/bin/ to your PATH environment variable and then to use ARCH-linux-gcc, ARCH-linux-objdump,
ARCH-linux-ld, etc.

It is possible to relocate the toolchain - but then --sysroot must be passed every time the compiler is called to tell where the
libraries and header files are.

It is also possible to generate the Buildroot toolchain in a directory other than output/host by using the Build options
→ Host dir option. This could be useful if the toolchain must be shared with other users.

8.11.2 Using gdb in Buildroot

Buildroot allows to do cross-debugging, where the debugger runs on the build machine and communicates with gdbserver on
the target to control the execution of the program.

To achieve this:

• If you are using an internal toolchain (built by Buildroot), you must enable BR2_PACKAGE_HOST_GDB, BR2_PACKAGE
_GDB and BR2_PACKAGE_GDB_SERVER. This ensures that both the cross gdb and gdbserver get built, and that gdbserver
gets installed to your target.

• If you are using an external toolchain, you should enable BR2_TOOLCHAIN_EXTERNAL_GDB_SERVER_COPY, which will
copy the gdbserver included with the external toolchain to the target. If your external toolchain does not have a cross gdb or
gdbserver, it is also possible to let Buildroot build them, by enabling the same options as for the internal toolchain backend.

Now, to start debugging a program called foo, you should run on the target:

gdbserver :2345 foo

This will cause gdbserver to listen on TCP port 2345 for a connection from the cross gdb.

Then, on the host, you should start the cross gdb using the following command line:

<buildroot>/output/host/usr/bin/<tuple>-gdb -x <buildroot>/output/staging/usr/share/ ←↩
buildroot/gdbinit foo

Of course, foo must be available in the current directory, built with debugging symbols. Typically you start this command from
the directory where foo is built (and not from output/target/ as the binaries in that directory are stripped).

The <buildroot>/output/staging/usr/share/buildroot/gdbinit file will tell the cross gdb where to find the
libraries of the target.

Finally, to connect to the target from the cross gdb:

(gdb) target remote <target ip address>:2345

8.11.3 Using ccache in Buildroot

ccache is a compiler cache. It stores the object files resulting from each compilation process, and is able to skip future compilation
of the same source file (with same compiler and same arguments) by using the pre-existing object files. When doing almost
identical builds from scratch a number of times, it can nicely speed up the build process.

http://ccache.samba.org

The Buildroot user manual 23 / 116

ccache support is integrated in Buildroot. You just have to enable Enable compiler cache in Build options. This
will automatically build ccache and use it for every host and target compilation.

The cache is located in $HOME/.buildroot-ccache. It is stored outside of Buildroot output directory so that it can be
shared by separate Buildroot builds. If you want to get rid of the cache, simply remove this directory.

You can get statistics on the cache (its size, number of hits, misses, etc.) by running make ccache-stats.

The make target ccache-options and the CCACHE_OPTIONS variable provide more generic access to the ccache. For
example

set cache limit size
make CCACHE_OPTIONS="--max-size=5G" ccache-options

zero statistics counters
make CCACHE_OPTIONS="--zero-stats" ccache-options

8.11.4 Location of downloaded packages

The various tarballs that are downloaded by Buildroot are all stored in BR2_DL_DIR, which by default is the dl directory. If
you want to keep a complete version of Buildroot which is known to be working with the associated tarballs, you can make a
copy of this directory. This will allow you to regenerate the toolchain and the target filesystem with exactly the same versions.

If you maintain several Buildroot trees, it might be better to have a shared download location. This can be achieved by pointing the
BR2_DL_DIR environment variable to a directory. If this is set, then the value of BR2_DL_DIR in the Buildroot configuration
is overridden. The following line should be added to <~/.bashrc>.

$ export BR2_DL_DIR <shared download location>

The download location can also be set in the .config file, with the BR2_DL_DIR option. Unlike most options in the .config
file, this value is overridden by the BR2_DL_DIR environment variable.

8.11.5 Package-specific make targets

Running make <package> builds and installs that particular package and its dependencies.

For packages relying on the Buildroot infrastructure, there are numerous special make targets that can be called independently
like this:

make <package>-<target>

The package build targets are (in the order they are executed):

command/target Description
source Fetch the source (download the tarball, clone the source repository, etc)
depends Build and install all dependencies required to build the package
extract Put the source in the package build directory (extract the tarball, copy the source, etc)
patch Apply the patches, if any

configure Run the configure commands, if any
build Run the compilation commands

install-
staging

target package: Run the installation of the package in the staging directory, if
necessary

install-target target package: Run the installation of the package in the target directory, if
necessary

install target package: Run the 2 previous installation commands
host package: Run the installation of the package in the host directory

Additionally, there are some other useful make targets:

The Buildroot user manual 24 / 116

command/target Description
show-depends Displays the dependencies required to build the package
graph-depends Generate a dependency graph of the package, in the context of the current Buildroot

configuration. See this section [?simpara] for more details about dependency graphs.
dirclean Remove the whole package build directory
rebuild Re-run the compilation commands - this only makes sense when using the

OVERRIDE_SRCDIR feature or when you modified a file directly in the build
directory

reconfigure Re-run the configure commands, then rebuild - this only makes sense when using the
OVERRIDE_SRCDIR feature or when you modified a file directly in the build
directory

8.11.6 Using Buildroot during development

The normal operation of Buildroot is to download a tarball, extract it, configure, compile and install the software component
found inside this tarball. The source code is extracted in output/build/<package>-<version>, which is a temporary
directory: whenever make clean is used, this directory is entirely removed, and re-recreated at the next make invocation.
Even when a Git or Subversion repository is used as the input for the package source code, Buildroot creates a tarball out of it,
and then behaves as it normally does with tarballs.

This behavior is well-suited when Buildroot is used mainly as an integration tool, to build and integrate all the components of
an embedded Linux system. However, if one uses Buildroot during the development of certain components of the system, this
behavior is not very convenient: one would instead like to make a small change to the source code of one package, and be able
to quickly rebuild the system with Buildroot.

Making changes directly in output/build/<package>-<version> is not an appropriate solution, because this directory
is removed on make clean.

Therefore, Buildroot provides a specific mechanism for this use case: the <pkg>_OVERRIDE_SRCDIR mechanism. Buildroot
reads an override file, which allows the user to tell Buildroot the location of the source for certain packages. By default this
override file is named local.mk and located in the top directory of the Buildroot source tree, but a different location can be
specified through the BR2_PACKAGE_OVERRIDE_FILE configuration option.

In this override file, Buildroot expects to find lines of the form:

<pkg1>_OVERRIDE_SRCDIR = /path/to/pkg1/sources
<pkg2>_OVERRIDE_SRCDIR = /path/to/pkg2/sources

For example:

LINUX_OVERRIDE_SRCDIR = /home/bob/linux/
BUSYBOX_OVERRIDE_SRCDIR = /home/bob/busybox/

When Buildroot finds that for a given package, an <pkg>_OVERRIDE_SRCDIR has been defined, it will no longer attempt
to download, extract and patch the package. Instead, it will directly use the source code available in in the specified directory
and make clean will not touch this directory. This allows to point Buildroot to your own directories, that can be managed by
Git, Subversion, or any other version control system. To achieve this, Buildroot will use rsync to copy the source code of the
component from the specified <pkg>_OVERRIDE_SRCDIR to output/build/<package>-custom/.

This mechanism is best used in conjunction with the make <pkg>-rebuild and make <pkg>-reconfigure targets.
A make <pkg>-rebuild all sequence will rsync the source code from <pkg>_OVERRIDE_SRCDIR to output/
build/<package>-custom (thanks to rsync, only the modified files are copied), and restart the build process of just this
package.

In the example of the linux package above, the developer can then make a source code change in /home/bob/linux and
then run:

make linux-rebuild all

and in a matter of seconds gets the updated Linux kernel image in output/images. Similarly, a change can be made to the
BusyBox source code in /home/bob/busybox, and after:

The Buildroot user manual 25 / 116

make busybox-rebuild all

the root filesystem image in output/images contains the updated BusyBox.

The Buildroot user manual 26 / 116

Chapter 9

Project-specific customization

Typical actions you may need to perform for a given project are:

• configuring Buildroot (including build options and toolchain, bootloader, kernel, package and filesystem image type selection)

• configuring other components, like the Linux kernel and BusyBox

• customizing the generated target filesystem

– adding or overwriting files on the target filesystem (using BR2_ROOTFS_OVERLAY)

– modifying or deleting files on the target filesystem (using BR2_ROOTFS_POST_BUILD_SCRIPT)

– running arbitrary commands prior to generating the filesystem image (using BR2_ROOTFS_POST_BUILD_SCRIPT)

– setting file permissions and ownership (using BR2_ROOTFS_DEVICE_TABLE)

– adding custom devices nodes (using BR2_ROOTFS_STATIC_DEVICE_TABLE)

• adding custom user accounts (using BR2_ROOTFS_USERS_TABLES)

• running arbitrary commands after generating the filesystem image (using BR2_ROOTFS_POST_IMAGE_SCRIPT)

• adding project-specific patches to some packages (using BR2_GLOBAL_PATCH_DIR)

• adding project-specific packages

An important note regarding such project-specific customizations: please carefully consider which changes are indeed project-
specific and which changes are also useful to developers outside your project. The Buildroot community highly recommends
and encourages the upstreaming of improvements, packages and board support to the official Buildroot project. Of course, it is
sometimes not possible or desirable to upstream because the changes are highly specific or proprietary.

This chapter describes how to make such project-specific customizations in Buildroot and how to store them in a way that you
can build the same image in a reproducible way, even after running make clean. By following the recommended strategy, you
can even use the same Buildroot tree to build multiple distinct projects!

9.1 Recommended directory structure

When customizing Buildroot for your project, you will be creating one or more project-specific files that need to be stored
somewhere. While most of these files could be placed in any location as their path is to be specified in the Buildroot configuration,
the Buildroot developers recommend a specific directory structure which is described in this section.

Orthogonal to this directory structure, you can choose where you place this structure itself: either inside the Buildroot tree, or
outside of it using BR2_EXTERNAL. Both options are valid, the choice is up to you.

The Buildroot user manual 27 / 116

+-- board/
| +-- <company>/
| +-- <boardname>/
| +-- linux.config
| +-- busybox.config
| +-- <other configuration files>
| +-- post_build.sh
| +-- post_image.sh
| +-- rootfs_overlay/
| | +-- etc/
| | +-- <some file>
| +-- patches/
| +-- foo/
| | +-- <some patch>
| +-- libbar/
| +-- <some other patches>
|
+-- configs/
| +-- <boardname>_defconfig
|
+-- package/
| +-- <company>/
| +-- Config.in (if not using BR2_EXTERNAL)
| +-- <company>.mk (if not using BR2_EXTERNAL)
| +-- package1/
| | +-- Config.in
| | +-- package1.mk
| +-- package2/
| +-- Config.in
| +-- package2.mk
|
+-- Config.in (if using BR2_EXTERNAL)
+-- external.mk (if using BR2_EXTERNAL)

Details on the files shown above are given further in this chapter.

Note: if you choose to place this structure outside of the Buildroot tree using BR2_EXTERNAL, the <company> and possibly
<boardname> components may be superfluous and can be left out.

9.1.1 Implementing layered customizations

It is quite common for a user to have several related projects that partly need the same customizations. Instead of duplicating
these customizations for each project, it is recommended to use a layered customization approach, as explained in this section.

Almost all of the customization methods available in Buildroot, like post-build scripts and root filesystem overlays, accept a
space-separated list of items. The specified items are always treated in order, from left to right. By creating more than one
such item, one for the common customizations and another one for the really project-specific customizations, you can avoid
unnecessary duplication. Each layer is typically embodied by a separate directory inside board/<company>/. Depending on
your projects, you could even introduce more than two layers.

An example directory structure for where a user has two customization layers common and fooboard is:

+-- board/
+-- <company>/

+-- common/
| +-- post_build.sh
| +-- rootfs_overlay/
| | +-- ...
| +-- patches/
| +-- ...
|

The Buildroot user manual 28 / 116

+-- fooboard/
+-- linux.config
+-- busybox.config
+-- <other configuration files>
+-- post_build.sh
+-- rootfs_overlay/
| +-- ...
+-- patches/

+-- ...

For example, if the user has the BR2_GLOBAL_PATCH_DIR configuration option set as:

BR2_GLOBAL_PATCH_DIR="board/<company>/common/patches board/<company>/fooboard/patches"

then first the patches from the common layer would be applied, followed by the patches from the fooboard layer.

9.2 Keeping customizations outside of Buildroot

As already briefly mentioned in Section 9.1, you can place project-specific customizations in two locations:

• directly within the Buildroot tree, typically maintaining them using branches in a version control system so that upgrading to
a newer Buildroot release is easy.

• outside of the Buildroot tree, using the BR2_EXTERNAL mechanism. This mechanism allows to keep package recipes, board
support and configuration files outside of the Buildroot tree, while still having them nicely integrated in the build logic. This
section explains how to use BR2_EXTERNAL.

BR2_EXTERNAL is an environment variable that can be used to point to a directory that contains Buildroot customizations. It
can be passed to any Buildroot make invocation. It is automatically saved in the hidden .br-external file in the output
directory. Thanks to this, there is no need to pass BR2_EXTERNAL at every make invocation. It can however be changed at any
time by passing a new value, and can be removed by passing an empty value.

Note: the BR2_EXTERNAL path can be either an absolute or a relative path, but if it’s passed as a relative path, it is important to
note that it is interpreted relative to the main Buildroot source directory, not to the Buildroot output directory.

Some examples:

buildroot/ $ make BR2_EXTERNAL=/path/to/foobar menuconfig

From now on, external definitions from the /path/to/foobar directory will be used:

buildroot/ $ make
buildroot/ $ make legal-info

We can switch to another external definitions directory at any time:

buildroot/ $ make BR2_EXTERNAL=/where/we/have/barfoo xconfig

Or disable the usage of external definitions:

buildroot/ $ make BR2_EXTERNAL= xconfig

BR2_EXTERNAL allows three different things:

• One can store all the board-specific configuration files there, such as the kernel configuration, the root filesystem overlay, or
any other configuration file for which Buildroot allows to set its location. The BR2_EXTERNAL value is available within the
Buildroot configuration using $(BR2_EXTERNAL). As an example, one could set the BR2_ROOTFS_OVERLAY Buildroot
option to $(BR2_EXTERNAL)/board/<boardname>/overlay/ (to specify a root filesystem overlay), or the BR2_LI
NUX_KERNEL_CUSTOM_CONFIG_FILE Buildroot option to $(BR2_EXTERNAL)/board/<boardname>/kernel.
config (to specify the location of the kernel configuration file).

The Buildroot user manual 29 / 116

• One can store package recipes (i.e. Config.in and <packagename>.mk), or even custom configuration options and make
logic. Buildroot automatically includes $(BR2_EXTERNAL)/Config.in to make it appear in the top-level configuration
menu, and includes $(BR2_EXTERNAL)/external.mk with the rest of the makefile logic. Providing those two files is
mandatory, but they can be empty.

The main usage of this is to store package recipes. The recommended way to do this is to write a $(BR2_EXTERNAL)/
Config.in file that looks like:

source "$BR2_EXTERNAL/package/package1/Config.in"
source "$BR2_EXTERNAL/package/package2/Config.in"

Then, have a $(BR2_EXTERNAL)/external.mk file that looks like:

include $(sort $(wildcard $(BR2_EXTERNAL)/package/*/*.mk))

And then in $(BR2_EXTERNAL)/package/package1 and $(BR2_EXTERNAL)/package/package2 create nor-
mal Buildroot package recipes, as explained in Chapter 17. If you prefer, you can also group the packages in subdirectories
called <boardname> and adapt the above paths accordingly.

• One can store Buildroot defconfigs in the configs subdirectory of $(BR2_EXTERNAL). Buildroot will automatically show
them in the output of make help and allow them to be loaded with the normal make <name>_defconfig command.
They will be visible under the User-provided configs’ label in the make help output.

9.3 Storing the Buildroot configuration

The Buildroot configuration can be stored using the command make savedefconfig.

This strips the Buildroot configuration down by removing configuration options that are at their default value. The result is stored
in a file called defconfig. If you want to save it in another place, change the BR2_DEFCONFIG option in the Buildroot
configuration itself, or call make with make savedefconfig BR2_DEFCONFIG=<path-to-defconfig>.

The recommended place to store this defconfig is configs/<boardname>_defconfig. If you follow this recommenda-
tion, the configuration will be listed in make help and can be set again by running make <boardname>_defconfig.

Alternatively, you can copy the file to any other place and rebuild with make defconfig BR2_DEFCONFIG=<path-to-
defconfig-file>.

9.4 Storing the configuration of other components

The configuration files for BusyBox, the Linux kernel, Barebox and uClibc should be stored as well if changed. For each of
these components, a Buildroot configuration option exists to point to an input configuration file, e.g. BR2_LINUX_KERNEL
_CUSTOM_CONFIG_FILE. To store their configuration, set these configuration options to a path where you want to save the
configuration files, and then use the helper targets described below to actually store the configuration.

As explained in Section 9.1, the recommended path to store these configuration files is board/<company>/<boardname>/
foo.config.

Make sure that you create a configuration file before changing the BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE etc. op-
tions. Otherwise, Buildroot will try to access this config file, which doesn’t exist yet, and will fail. You can create the configura-
tion file by running make linux-menuconfig etc.

Buildroot provides a few helper targets to make the saving of configuration files easier.

• make linux-update-defconfig saves the linux configuration to the path specified by BR2_LINUX_KERNEL_CUST
OM_CONFIG_FILE. It simplifies the config file by removing default values. However, this only works with kernels starting
from 2.6.33. For earlier kernels, use make linux-update-config.

• make busybox-update-config saves the busybox configuration to the path specified by BR2_PACKAGE_BUSYBOX_
CONFIG.

The Buildroot user manual 30 / 116

• make uclibc-update-config saves the uClibc configuration to the path specified by BR2_UCLIBC_CONFIG.

• make barebox-update-defconfig saves the barebox configuration to the path specified by BR2_TARGET_BAREBO
X_CUSTOM_CONFIG_FILE.

• For at91bootstrap3, no helper exists so you have to copy the config file manually to BR2_TARGET_AT91BOOTSTRAP3_CU
STOM_CONFIG_FILE.

9.5 Customizing the generated target filesystem

Besides changing the configuration through make *config, there are a few other ways to customize the resulting target
filesystem.

The two recommended methods, which can co-exist, are root filesystem overlay(s) and post build script(s).

Root filesystem overlays (BR2_ROOTFS_OVERLAY)
A filesystem overlay is a tree of files that is copied directly over the target filesystem after it has been built. To enable this
feature, set config option BR2_ROOTFS_OVERLAY (in the System configuration menu) to the root of the overlay.
You can even specify multiple overlays, space-separated. If you specify a relative path, it will be relative to the root of the
Buildroot tree. Hidden directories of version control systems, like .git, .svn, .hg, etc., files called .empty and files
ending in ~ are excluded from the copy.

As shown in Section 9.1, the recommended path for this overlay is board/<company>/<boardname>/rootfs-
overlay.

Post-build scripts (BR2_ROOTFS_POST_BUILD_SCRIPT)
Post-build scripts are shell scripts called after Buildroot builds all the selected software, but before the rootfs images are
assembled. To enable this feature, specify a space-separated list of post-build scripts in config option BR2_ROOTFS_PO
ST_BUILD_SCRIPT (in the System configuration menu). If you specify a relative path, it will be relative to the
root of the Buildroot tree.

Using post-build scripts, you can remove or modify any file in your target filesystem. You should, however, use this feature
with care. Whenever you find that a certain package generates wrong or unneeded files, you should fix that package rather
than work around it with some post-build cleanup scripts.

As shown in Section 9.1, the recommended path for this script is board/<company>/<boardname>/post_bu
ild.sh.

The post-build scripts are run with the main Buildroot tree as current working directory. The path to the target filesystem is
passed as the first argument to each script. If the config option BR2_ROOTFS_POST_SCRIPT_ARGS is not empty, these
arguments will be passed to the script too. All the scripts will be passed the exact same set of arguments, it is not possible
to pass different sets of arguments to each script.

In addition, you may also use these environment variables:

• BR2_CONFIG: the path to the Buildroot .config file
• HOST_DIR, STAGING_DIR, TARGET_DIR: see Section 17.5.2
• BUILD_DIR: the directory where packages are extracted and built
• BINARIES_DIR: the place where all binary files (aka images) are stored
• BASE_DIR: the base output directory

Below two more methods of customizing the target filesystem are described, but they are not recommended.

Direct modification of the target filesystem
For temporary modifications, you can modify the target filesystem directly and rebuild the image. The target filesystem is
available under output/target/. After making your changes, run make to rebuild the target filesystem image.

This method allows you to do anything to the target filesystem, but if you need to clean your Buildroot tree using make
clean, these changes will be lost. Such cleaning is necessary in several cases, refer to Section 8.2 for details. This
solution is therefore only useful for quick tests: changes do not survive the make clean command. Once you have
validated your changes, you should make sure that they will persist after a make clean, using a root filesystem overlay
or a post-build script.

The Buildroot user manual 31 / 116

Custom target skeleton (BR2_ROOTFS_SKELETON_CUSTOM)
The root filesystem image is created from a target skeleton, on top of which all packages install their files. The skeleton
is copied to the target directory output/target before any package is built and installed. The default target skeleton
provides the standard Unix filesystem layout and some basic init scripts and configuration files.

If the default skeleton (available under system/skeleton) does not match your needs, you would typically use a root
filesystem overlay or post-build script to adapt it. However, if the default skeleton is entirely different than what you need,
using a custom skeleton may be more suitable.

To enable this feature, enable config option BR2_ROOTFS_SKELETON_CUSTOM and set BR2_ROOTFS_SKELETON_C
USTOM_PATH to the path of your custom skeleton. Both options are available in the System configuration menu.
If you specify a relative path, it will be relative to the root of the Buildroot tree.

This method is not recommended because it duplicates the entire skeleton, which prevents taking advantage of the fixes or
improvements brought to the default skeleton in later Buildroot releases.

9.5.1 Setting file permissions and ownership and adding custom devices nodes

Sometimes it is needed to set specific permissions or ownership on files or device nodes. For example, certain files may need
to be owned by root. Since the post-build scripts are not run as root, you cannot do such changes from there unless you use an
explicit fakeroot from the post-build script.

Instead, Buildroot provides support for so-called permission tables. To use this feature, set config option BR2_ROOTFS_DEVI
CE_TABLE to a space-separated list of permission tables, regular text files following the makedev syntax Chapter 22.

If you are using a static device table (i.e. not using devtmpfs, mdev, or (e)udev) then you can add device nodes using the
same syntax, in so-called device tables. To use this feature, set config option BR2_ROOTFS_STATIC_DEVICE_TABLE to a
space-separated list of device tables.

As shown in Section 9.1, the recommended location for such files is board/<company>/<boardname>/.

It should be noted that if the specific permissions or device nodes are related to a specific application, you should set variables
FOO_PERMISSIONS and FOO_DEVICES in the package’s .mk file instead (see Section 17.5.2).

9.6 Adding custom user accounts

Sometimes it is needed to add specific users in the target system. To cover this requirement, Buildroot provides support for
so-called users tables. To use this feature, set config option BR2_ROOTFS_USERS_TABLES to a space-separated list of users
tables, regular text files following the makeusers syntax Chapter 23.

As shown in Section 9.1, the recommended location for such files is board/<company>/<boardname>/.

It should be noted that if the custom users are related to a specific application, you should set variable FOO_USERS in the
package’s .mk file instead (see Section 17.5.2).

9.7 Customization after the images have been created

While post-build scripts (Section 9.5) are run before building the filesystem image, kernel and bootloader, post-image scripts
can be used to perform some specific actions after all images have been created.

Post-image scripts can for example be used to automatically extract your root filesystem tarball in a location exported by your
NFS server, or to create a special firmware image that bundles your root filesystem and kernel image, or any other custom action
required for your project.

To enable this feature, specify a space-separated list of post-image scripts in config option BR2_ROOTFS_POST_IMAGE_SC
RIPT (in the System configuration menu). If you specify a relative path, it will be relative to the root of the Buildroot
tree.

Just like post-build scripts, post-image scripts are run with the main Buildroot tree as current working directory. The path to the
images output directory is passed as the first argument to each script. If the config option BR2_ROOTFS_POST_SCRIPT_A

The Buildroot user manual 32 / 116

RGS is not empty, these arguments will be passed to the script too. All the scripts will be passed the exact same set of arguments,
it is not possible to pass different sets of arguments to each script.

Again just like for the post-build scripts, the scripts have access to the environment variables BR2_CONFIG, HOST_DIR,
STAGING_DIR, TARGET_DIR, BUILD_DIR, BINARIES_DIR and BASE_DIR.

The post-image scripts will be executed as the user that executes Buildroot, which should normally not be the root user. Therefore,
any action requiring root permissions in one of these scripts will require special handling (usage of fakeroot or sudo), which is
left to the script developer.

9.8 Adding project-specific patches

It is sometimes useful to apply extra patches to packages - on top of those provided in Buildroot. This might be used to support
custom features in a project, for example, or when working on a new architecture.

The BR2_GLOBAL_PATCH_DIR configuration option can be used to specify a space separated list of one or more directories
containing package patches.

For a specific version <packageversion> of a specific package <packagename>, patches are applied from BR2_GLOBA
L_PATCH_DIR as follows:

1. For every directory - <global-patch-dir> - that exists in BR2_GLOBAL_PATCH_DIR, a <package-patch-
dir> will be determined as follows:

• <global-patch-dir>/<packagename>/<packageversion>/ if the directory exists.

• Otherwise, <global-patch-dir>/<packagename> if the directory exists.

2. Patches will then be applied from a <package-patch-dir> as follows:

• If a series file exists in the package directory, then patches are applied according to the series file;

• Otherwise, patch files matching <packagename>-*.patch are applied in alphabetical order. So, to ensure they are
applied in the right order, it is highly recommended to name the patch files like this: <packagename>-<number>-
<description>.patch, where <number> refers to the apply order.

For information about how patches are applied for a package, see Section 18.2

The BR2_GLOBAL_PATCH_DIR option is the preferred method for specifying a custom patch directory for packages. It can
be used to specify a patch directory for any package in buildroot. It should also be used in place of the custom patch directory
options that are available for packages such as U-Boot and Barebox. By doing this, it will allow a user to manage their patches
from one top-level directory.

The exception to BR2_GLOBAL_PATCH_DIR being the preferred method for specifying custom patches is BR2_LINUX_KER
NEL_PATCH. BR2_LINUX_KERNEL_PATCH should be used to specify kernel patches that are available at an URL. Note: BR2
_LINUX_KERNEL_PATCH specifies kernel patches that are applied after patches available in BR2_GLOBAL_PATCH_DIR, as
it is done from a post-patch hook of the Linux package.

9.9 Adding project-specific packages

In general, any new package should be added directly in the package directory and submitted to the Buildroot upstream project.
How to add packages to Buildroot in general is explained in full detail in Chapter 17 and will not be repeated here. However,
your project may need some proprietary packages that cannot be upstreamed. This section will explain how you can keep such
project-specific packages in a project-specific directory.

As shown in Section 9.1, the recommended location for project-specific packages is package/<company>/. If you are using
the BR2_EXTERNAL feature (see Section 9.2) the recommended location is $(BR2_EXTERNAL)/package/.

The Buildroot user manual 33 / 116

However, Buildroot will not be aware of the packages in this location, unless we perform some additional steps. As explained
in Chapter 17, a package in Buildroot basically consists of two files: a .mk file (describing how to build the package) and a
Config.in file (describing the configuration options for this package).

Buildroot will automatically include the .mk files in first-level subdirectories of the package directory (using the pattern
package/*/*.mk). If we want Buildroot to include .mk files from deeper subdirectories (like package/<company>/pac
kage1/) then we simply have to add a .mk file in a first-level subdirectory that includes these additional .mk files. Therefore,
create a file package/<company>/<company>.mk with following contents (assuming you have only one extra directory
level below package/<company>/):

include $(sort $(wildcard package/<company>/*/*.mk))

If you are using BR2_EXTERNAL, create a file $(BR2_EXTERNAL)/external.mkwith following contents (again assuming
only one extra level):

include $(sort $(wildcard $(BR2_EXTERNAL)/package/*/*.mk))

For the Config.in files, create a file package/<company>/Config.in that includes the Config.in files of all your
packages. An exhaustive list has to be provided since wildcards are not supported in the source command of kconfig. For
example:

source "package/<company>/package1/Config.in"
source "package/<company>/package2/Config.in"

Include this new file package/<company>/Config.in from package/Config.in, preferably in a company-specific
menu to make merges with future Buildroot versions easier.

If you are using BR2_EXTERNAL, create a file $(BR2_EXTERNAL)/Config.in with similar contents:

source "$BR2_EXTERNAL/package/package1/Config.in"
source "$BR2_EXTERNAL/package/package2/Config.in"

You do not have to add an include for this $(BR2_EXTERNAL)/Config.in file as it is included automatically.

9.10 Quick guide to storing your project-specific customizations

Earlier in this chapter, the different methods for making project-specific customizations have been described. This section will
now summarize all this by providing step-by-step instructions to storing your project-specific customizations. Clearly, the steps
that are not relevant to your project can be skipped.

1. make menuconfig to configure toolchain, packages and kernel.

2. make linux-menuconfig to update the kernel config, similar for other configuration like busybox, uclibc, . . .

3. mkdir -p board/<manufacturer>/<boardname>

4. Set the following options to board/<manufacturer>/<boardname>/<package>.config (as far as they are
relevant):

• BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE

• BR2_PACKAGE_BUSYBOX_CONFIG

• BR2_UCLIBC_CONFIG

• BR2_TARGET_AT91BOOTSTRAP3_CUSTOM_CONFIG_FILE

• BR2_TARGET_BAREBOX_CUSTOM_CONFIG_FILE

5. Write the configuration files:

• make linux-update-defconfig

The Buildroot user manual 34 / 116

• make busybox-update-config

• make uclibc-update-config

• cp <output>/build/at91bootstrap3-*/.config board/<manufacturer>/<boardname>/at91
bootstrap3.config

• make barebox-update-defconfig

6. Create board/<manufacturer>/<boardname>/rootfs-overlay/ and fill it with additional files you need on
your rootfs, e.g. board/<manufacturer>/<boardname>/rootfs-overlay/etc/inittab. Set BR2_ROO
TFS_OVERLAY to board/<manufacturer>/<boardname>/rootfs-overlay.

7. Create a post-build script board/<manufacturer>/<boardname>/post_build.sh. Set BR2_ROOTFS_POS
T_BUILD_SCRIPT to board/<manufacturer>/<boardname>/post_build.sh

8. If additional setuid permissions have to be set or device nodes have to be created, create board/<manufacturer>/
<boardname>/device_table.txt and add that path to BR2_ROOTFS_DEVICE_TABLE.

9. If additional user accounts have to be created, create board/<manufacturer>/<boardname>/users_table.
txt and add that path to BR2_ROOTFS_USERS_TABLES.

10. To add custom patches to certain packages, set BR2_GLOBAL_PATCH_DIR to board/<manufacturer>/<board
name>/patches/ and add your patches for each package in a subdirectory named after the package. Each patch should
be called <packagename>-<num>-<description>.patch.

11. Specifically for the Linux kernel, there also exists the option BR2_LINUX_KERNEL_PATCH with as main advantage
that it can also download patches from a URL. If you do not need this, BR2_GLOBAL_PATCH_DIR is preferred. U-
Boot, Barebox, at91bootstrap and at91bootstrap3 also have separate options, but these do not provide any advantage over
BR2_GLOBAL_PATCH_DIR and will likely be removed in the future.

12. If you need to add project-specific packages, create package/<manufacturer>/ and place your packages in that
directory. Create an overall <manufacturer>.mk file that includes the .mk files of all your packages. Create an
overall Config.in file that sources the Config.in files of all your packages. Include this Config.in file from
Buildroot’s package/Config.in file.

13. make savedefconfig to save the buildroot configuration.

14. cp defconfig configs/<boardname>_defconfig

The Buildroot user manual 35 / 116

Chapter 10

Frequently Asked Questions & Troubleshooting

10.1 The boot hangs after Starting network. . .

If the boot process seems to hang after the following messages (messages not necessarily exactly similar, depending on the list
of packages selected):

Freeing init memory: 3972K
Initializing random number generator... done.
Starting network...
Starting dropbear sshd: generating rsa key... generating dsa key... OK

then it means that your system is running, but didn’t start a shell on the serial console. In order to have the system start a shell on
your serial console, you have to go into the Buildroot configuration, in System configuration, modify Run a getty
(login prompt) after boot and set the appropriate port and baud rate in the getty options submenu. This will
automatically tune the /etc/inittab file of the generated system so that a shell starts on the correct serial port.

10.2 Why is there no compiler on the target?

It has been decided that support for the native compiler on the target would be stopped from the Buildroot-2012.11 release
because:

• this feature was neither maintained nor tested, and often broken;

• this feature was only available for Buildroot toolchains;

• Buildroot mostly targets small or very small target hardware with limited resource onboard (CPU, ram, mass-storage), for
which compiling on the target does not make much sense;

• Buildroot aims at easing the cross-compilation, making native compilation on the target unnecessary.

If you need a compiler on your target anyway, then Buildroot is not suitable for your purpose. In such case, you need a real
distribution and you should opt for something like:

• openembedded

• yocto

• emdebian

• Fedora

• openSUSE ARM

• Arch Linux ARM

• . . .

http://www.openembedded.org
https://www.yoctoproject.org
http://www.emdebian.org
https://fedoraproject.org/wiki/Architectures
http://en.opensuse.org/Portal:ARM
http://archlinuxarm.org

The Buildroot user manual 36 / 116

10.3 Why are there no development files on the target?

Since there is no compiler available on the target (see Section 10.2), it does not make sense to waste space with headers or static
libraries.

Therefore, those files are always removed from the target since the Buildroot-2012.11 release.

10.4 Why is there no documentation on the target?

Because Buildroot mostly targets small or very small target hardware with limited resource onboard (CPU, ram, mass-storage),
it does not make sense to waste space with the documentation data.

If you need documentation data on your target anyway, then Buildroot is not suitable for your purpose, and you should look for
a real distribution (see: Section 10.2).

10.5 Why are some packages not visible in the Buildroot config menu?

If a package exists in the Buildroot tree and does not appear in the config menu, this most likely means that some of the package’s
dependencies are not met.

To know more about the dependencies of a package, search for the package symbol in the config menu (see Section 8.1).

Then, you may have to recursively enable several options (which correspond to the unmet dependencies) to finally be able to
select the package.

If the package is not visible due to some unmet toolchain options, then you should certainly run a full rebuild (see Section 8.1
for more explanations).

10.6 Why not use the target directory as a chroot directory?

There are plenty of reasons to not use the target directory a chroot one, among these:

• file ownerships, modes and permissions are not correctly set in the target directory;

• device nodes are not created in the target directory.

For these reasons, commands run through chroot, using the target directory as the new root, will most likely fail.

If you want to run the target filesystem inside a chroot, or as an NFS root, then use the tarball image generated in images/ and
extract it as root.

10.7 Why doesn’t Buildroot generate binary packages (.deb, .ipkg. . .)?

One feature that is often discussed on the Buildroot list is the general topic of "package management". To summarize, the idea
would be to add some tracking of which Buildroot package installs what files, with the goals of:

• being able to remove files installed by a package when this package gets unselected from the menuconfig;

• being able to generate binary packages (ipk or other format) that can be installed on the target without re-generating a new root
filesystem image.

In general, most people think it is easy to do: just track which package installed what and remove it when the package is
unselected. However, it is much more complicated than that:

The Buildroot user manual 37 / 116

• It is not only about the target/ directory, but also the sysroot in host/usr/<tuple>/sysroot and the host/ direc-
tory itself. All files installed in those directories by various packages must be tracked.

• When a package is unselected from the configuration, it is not sufficient to remove just the files it installed. One must also
remove all its reverse dependencies (i.e. packages relying on it) and rebuild all those packages. For example, package A
depends optionally on the OpenSSL library. Both are selected, and Buildroot is built. Package A is built with crypto support
using OpenSSL. Later on, OpenSSL gets unselected from the configuration, but package A remains (since OpenSSL is an
optional dependency, this is possible.) If only OpenSSL files are removed, then the files installed by package A are broken:
they use a library that is no longer present on the target. Although this is technically doable, it adds a lot of complexity to
Buildroot, which goes against the simplicity we try to stick to.

• In addition to the previous problem, there is the case where the optional dependency is not even known to Buildroot. For
example, package A in version 1.0 never used OpenSSL, but in version 2.0 it automatically uses OpenSSL if available. If the
Buildroot .mk file hasn’t been updated to take this into account, then package A will not be part of the reverse dependencies of
OpenSSL and will not be removed and rebuilt when OpenSSL is removed. For sure, the .mk file of package A should be fixed
to mention this optional dependency, but in the mean time, you can have non-reproducible behaviors.

• The request is to also allow changes in the menuconfig to be applied on the output directory without having to rebuild everything
from scratch. However, this is very difficult to achieve in a reliable way: what happens when the suboptions of a package are
changed (we would have to detect this, and rebuild the package from scratch and potentially all its reverse dependencies), what
happens if toolchain options are changed, etc. At the moment, what Buildroot does is clear and simple so its behaviour is very
reliable and it is easy to support users. If configuration changes done in menuconfig are applied after the next make, then it
has to work correctly and properly in all situations, and not have some bizarre corner cases. The risk is to get bug reports
like "I have enabled package A, B and C, then ran make, then disabled package C and enabled package D and ran make, then
re-enabled package C and enabled package E and then there is a build failure". Or worse "I did some configuration, then built,
then did some changes, built, some more changes, built, some more changes, built, and now it fails, but I don’t remember all
the changes I did and in which order". This will be impossible to support.

For all these reasons, the conclusion is that adding tracking of installed files to remove them when the package is unselected, or
to generate a repository of binary packages, is something that is very hard to achieve reliably and will add a lot of complexity.

On this matter, the Buildroot developers make this position statement:

• Buildroot strives to make it easy to generate a root filesystem (hence the name, by the way.) That is what we want to make
Buildroot good at: building root filesystems.

• Buildroot is not meant to be a distribution (or rather, a distribution generator.) It is the opinion of most Buildroot developers
that this is not a goal we should pursue. We believe that there are other tools better suited to generate a distro than Buildroot
is. For example, Open Embedded, or openWRT, are such tools.

• We prefer to push Buildroot in a direction that makes it easy (or even easier) to generate complete root filesystems. This is
what makes Buildroot stands out in the crowd (among other things, of course!)

• We believe that for most embedded Linux systems, binary packages are not necessary, and potentially harmful. When binary
packages are used, it means that the system can be partially upgraded, which creates an enormous number of possible com-
binations of package versions that should be tested before doing the upgrade on the embedded device. On the other hand, by
doing complete system upgrades by upgrading the entire root filesystem image at once, the image deployed to the embedded
system is guaranteed to really be the one that has been tested and validated.

http://openembedded.org/
https://openwrt.org/

The Buildroot user manual 38 / 116

Chapter 11

Known issues

• It is not possible to pass extra linker options via BR2_TARGET_LDFLAGS if such options contain a $ sign. For example, the
following is known to break: BR2_TARGET_LDFLAGS="-Wl,-rpath=’$ORIGIN/../lib’"

• The ltp-testsuite package does not build with the default uClibc configuration used by the Buildroot toolchain backend.
The LTP testsuite uses several functions that are considered obsolete, such as sigset() and others. uClibc configuration options
such as DO_XSI_MATH, UCLIBC_HAS_OBSOLETE_BSD_SIGNAL and UCLIBC_SV4_DEPRECATED are needed if one
wants to build the ltp-testsuite package with uClibc. You need to either use a glibc or eglibc based toolchain, or enable
the appropriate options in the uClibc configuration.

• The xfsprogs package does not build with the default uClibc configuration used by the Buildroot toolchain backend. You
need to either use a glibc or eglibc based toolchain, or enable the appropriate options in the uClibc configuration.

• The mrouted package does not build with the default uClibc configuration used by the Buildroot toolchain backend. You
need to either use a glibc or eglibc based toolchain, or enable the appropriate options in the uClibc configuration.

• The libffi package is not supported on the SuperH 2 and ARC architectures.

• The prboom package triggers a compiler failure with the SuperH 4 compiler from Sourcery CodeBench, version 2012.09.

The Buildroot user manual 39 / 116

Chapter 12

Legal notice and licensing

12.1 Complying with open source licenses

All of the end products of Buildroot (toolchain, root filesystem, kernel, bootloaders) contain open source software, released under
various licenses.

Using open source software gives you the freedom to build rich embedded systems, choosing from a wide range of packages,
but also imposes some obligations that you must know and honour. Some licenses require you to publish the license text in the
documentation of your product. Others require you to redistribute the source code of the software to those that receive your
product.

The exact requirements of each license are documented in each package, and it is your responsibility (or that of your legal office)
to comply with those requirements. To make this easier for you, Buildroot can collect for you some material you will probably
need. To produce this material, after you have configured Buildroot with make menuconfig, make xconfig or make
gconfig, run:

make legal-info

Buildroot will collect legally-relevant material in your output directory, under the legal-info/ subdirectory. There you will
find:

• A README file, that summarizes the produced material and contains warnings about material that Buildroot could not produce.

• buildroot.config: this is the Buildroot configuration file that is usually produced with make menuconfig, and which
is necessary to reproduce the build.

• The source code for all packages; this is saved in the sources/ and host-sources/ subdirectories for target and host
packages respectively. The source code for packages that set <PKG>_REDISTRIBUTE =NO will not be saved. Patches
applied to some packages by Buildroot are distributed with the Buildroot sources and are not duplicated in the sources/ and
host-sources/ subdirectories.

• A manifest file (one for host and one for target packages) listing the configured packages, their version, license and related
information. Some of this information might not be defined in Buildroot; such items are marked as "unknown".

• The license texts of all packages, in the licenses/ and host-licenses/ subdirectories for target and host packages
respectively. If the license file(s) are not defined in Buildroot, the file is not produced and a warning in the README indicates
this.

Please note that the aim of the legal-info feature of Buildroot is to produce all the material that is somehow relevant for
legal compliance with the package licenses. Buildroot does not try to produce the exact material that you must somehow make
public. Certainly, more material is produced than is needed for a strict legal compliance. For example, it produces the source
code for packages released under BSD-like licenses, that you are not required to redistribute in source form.

The Buildroot user manual 40 / 116

Moreover, due to technical limitations, Buildroot does not produce some material that you will or may need, such as the toolchain
source code and the Buildroot source code itself (including patches to packages for which source distribution is required). When
you run make legal-info, Buildroot produces warnings in the README file to inform you of relevant material that could
not be saved.

12.2 License abbreviations

Here is a list of the licenses that are most widely used by packages in Buildroot, with the name used in the manifest files:

• GPLv2: GNU General Public License, version 2;

• GPLv2+: GNU General Public License, version 2 or (at your option) any later version;

• GPLv3: GNU General Public License, version 3;

• GPLv3+: GNU General Public License, version 3 or (at your option) any later version;

• GPL: GNU General Public License (any version);

• LGPLv2: GNU Library General Public License, version 2;

• LGPLv2+: GNU Library General Public License, version 2 or (at your option) any later version;

• LGPLv2.1: GNU Lesser General Public License, version 2.1;

• LGPLv2.1+: GNU Lesser General Public License, version 2.1 or (at your option) any later version;

• LGPLv3: GNU Lesser General Public License, version 3;

• LGPLv3+: GNU Lesser General Public License, version 3 or (at your option) any later version;

• LGPL: GNU Lesser General Public License (any version);

• BSD-4c: Original BSD 4-clause license;

• BSD-3c: BSD 3-clause license;

• BSD-2c: BSD 2-clause license;

• MIT: MIT-style license.

• Apache-2.0: Apache License, version 2.0;

12.3 Complying with the Buildroot license

Buildroot itself is an open source software, released under the GNU General Public License, version 2 or (at your option) any
later version. However, being a build system, it is not normally part of the end product: if you develop the root filesystem, kernel,
bootloader or toolchain for a device, the code of Buildroot is only present on the development machine, not in the device storage.

Nevertheless, the general view of the Buildroot developers is that you should release the Buildroot source code along with the
source code of other packages when releasing a product that contains GPL-licensed software. This is because the GNU GPL
defines the "complete source code" for an executable work as "all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the executable". Buildroot is part of the
scripts used to control compilation and installation of the executable, and as such it is considered part of the material that must
be redistributed.

Keep in mind that this is only the Buildroot developers’ opinion, and you should consult your legal department or lawyer in case
of any doubt.

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://apache.org/licenses/LICENSE-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

The Buildroot user manual 41 / 116

Chapter 13

Beyond Buildroot

13.1 Boot the generated images

13.1.1 NFS boot

To achieve NFS-boot, enable tar root filesystem in the Filesystem images menu.

After a complete build, just run the following commands to setup the NFS-root directory:

sudo tar -xavf /path/to/output_dir/rootfs.tar -C /path/to/nfs_root_dir

Remember to add this path to /etc/exports.

Then, you can execute a NFS-boot from your target.

13.2 Chroot

If you want to chroot in a generated image, then there are few thing you should be aware of:

• you should setup the new root from the tar root filesystem image;

• either the selected target architecture is compatible with your host machine, or you should use some qemu-* binary and
correctly set it within the binfmt properties to be able to run the binaries built for the target on your host machine;

• Buildroot does not currently provide host-qemu and binfmt correctly built and set for that kind of use.

The Buildroot user manual 42 / 116

Part III

Developer guide

The Buildroot user manual 43 / 116

Chapter 14

How Buildroot works

As mentioned above, Buildroot is basically a set of Makefiles that download, configure, and compile software with the correct
options. It also includes patches for various software packages - mainly the ones involved in the cross-compilation toolchain
(gcc, binutils and uClibc).

There is basically one Makefile per software package, and they are named with the .mk extension. Makefiles are split into many
different parts.

• The toolchain/ directory contains the Makefiles and associated files for all software related to the cross-compilation
toolchain: binutils, gcc, gdb, kernel-headers and uClibc.

• The arch/ directory contains the definitions for all the processor architectures that are supported by Buildroot.

• The package/ directory contains the Makefiles and associated files for all user-space tools and libraries that Buildroot can
compile and add to the target root filesystem. There is one sub-directory per package.

• The linux/ directory contains the Makefiles and associated files for the Linux kernel.

• The boot/ directory contains the Makefiles and associated files for the bootloaders supported by Buildroot.

• The system/ directory contains support for system integration, e.g. the target filesystem skeleton and the selection of an init
system.

• The fs/ directory contains the Makefiles and associated files for software related to the generation of the target root filesystem
image.

Each directory contains at least 2 files:

• something.mk is the Makefile that downloads, configures, compiles and installs the package something.

• Config.in is a part of the configuration tool description file. It describes the options related to the package.

The main Makefile performs the following steps (once the configuration is done):

• Create all the output directories: staging, target, build, etc. in the output directory (output/ by default, another
value can be specified using O=)

• Generate the toolchain target. When an internal toolchain is used, this means generating the cross-compilation toolchain. When
an external toolchain is used, this means checking the features of the external toolchain and importing it into the Buildroot
environment.

• Generate all the targets listed in the TARGETS variable. This variable is filled by all the individual components’ Makefiles.
Generating these targets will trigger the compilation of the userspace packages (libraries, programs), the kernel, the bootloader
and the generation of the root filesystem images, depending on the configuration.

The Buildroot user manual 44 / 116

Chapter 15

Coding style

Overall, these coding style rules are here to help you to add new files in Buildroot or refactor existing ones.

If you slightly modify some existing file, the important thing is to keep the consistency of the whole file, so you can:

• either follow the potentially deprecated coding style used in this file,

• or entirely rework it in order to make it comply with these rules.

15.1 Config.in file

Config.in files contain entries for almost anything configurable in Buildroot.

An entry has the following pattern:

config BR2_PACKAGE_LIBFOO
bool "libfoo"
depends on BR2_PACKAGE_LIBBAZ
select BR2_PACKAGE_LIBBAR
help
This is a comment that explains what libfoo is.

http://foosoftware.org/libfoo/

• The bool, depends on, select and help lines are indented with one tab.

• The help text itself should be indented with one tab and two spaces.

The Config.in files are the input for the configuration tool used in Buildroot, which is the regular Kconfig. For further details
about the Kconfig language, refer to http://kernel.org/doc/Documentation/kbuild/kconfig-language.txt.

15.2 The .mk file

• Header: The file starts with a header. It contains the module name, preferably in lowercase, enclosed between separators made
of 80 hashes. A blank line is mandatory after the header:

##
#
libfoo
#
##

http://kernel.org/doc/Documentation/kbuild/kconfig-language.txt

The Buildroot user manual 45 / 116

• Assignment: use = preceded and followed by one space:

LIBFOO_VERSION = 1.0
LIBFOO_CONF_OPTS += --without-python-support

Do not align the = signs.

• Indentation: use tab only:

define LIBFOO_REMOVE_DOC
$(RM) -fr $(TARGET_DIR)/usr/share/libfoo/doc \

$(TARGET_DIR)/usr/share/man/man3/libfoo*
endef

Note that commands inside a define block should always start with a tab, so make recognizes them as commands.

• Optional dependency:

– Prefer multi-line syntax.
YES:

ifeq ($(BR2_PACKAGE_PYTHON),y)
LIBFOO_CONF_OPTS += --with-python-support
LIBFOO_DEPENDENCIES += python
else
LIBFOO_CONF_OPTS += --without-python-support
endif

NO:

LIBFOO_CONF_OPTS += --with$(if $(BR2_PACKAGE_PYTHON),,out)-python-support
LIBFOO_DEPENDENCIES += $(if $(BR2_PACKAGE_PYTHON),python,)

– Keep configure options and dependencies close together.

• Optional hooks: keep hook definition and assignment together in one if block.

YES:

ifneq ($(BR2_LIBFOO_INSTALL_DATA),y)
define LIBFOO_REMOVE_DATA

$(RM) -fr $(TARGET_DIR)/usr/share/libfoo/data
endef
LIBFOO_POST_INSTALL_TARGET_HOOKS += LIBFOO_REMOVE_DATA
endif

NO:

define LIBFOO_REMOVE_DATA
$(RM) -fr $(TARGET_DIR)/usr/share/libfoo/data

endef

ifneq ($(BR2_LIBFOO_INSTALL_DATA),y)
LIBFOO_POST_INSTALL_TARGET_HOOKS += LIBFOO_REMOVE_DATA
endif

15.3 The documentation

The documentation uses the asciidoc format.

For further details about the asciidoc syntax, refer to http://www.methods.co.nz/asciidoc/userguide.html.

http://www.methods.co.nz/asciidoc/
http://www.methods.co.nz/asciidoc/
http://www.methods.co.nz/asciidoc/userguide.html

The Buildroot user manual 46 / 116

Chapter 16

Adding support for a particular board

Buildroot contains basic configurations for several publicly available hardware boards, so that users of such a board can easily
build a system that is known to work. You are welcome to add support for other boards to Buildroot too.

To do so, you need to create a normal Buildroot configuration that builds a basic system for the hardware: toolchain, kernel, boot-
loader, filesystem and a simple BusyBox-only userspace. No specific package should be selected: the configuration should be as
minimal as possible, and should only build a working basic BusyBox system for the target platform. You can of course use more
complicated configurations for your internal projects, but the Buildroot project will only integrate basic board configurations.
This is because package selections are highly application-specific.

Once you have a known working configuration, run make savedefconfig. This will generate a minimal defconfig file at
the root of the Buildroot source tree. Move this file into the configs/ directory, and rename it <boardname>_defconfig.

It is recommended to use as much as possible upstream versions of the Linux kernel and bootloaders, and to use as much as
possible default kernel and bootloader configurations. If they are incorrect for your board, or no default exists, we encourage you
to send fixes to the corresponding upstream projects.

However, in the mean time, you may want to store kernel or bootloader configuration or patches specific to your target platform.
To do so, create a directory board/<manufacturer> and a subdirectory board/<manufacturer>/<boardname>.
You can then store your patches and configurations in these directories, and reference them from the main Buildroot configuration.
Refer to Chapter 9 for more details.

The Buildroot user manual 47 / 116

Chapter 17

Adding new packages to Buildroot

This section covers how new packages (userspace libraries or applications) can be integrated into Buildroot. It also shows how
existing packages are integrated, which is needed for fixing issues or tuning their configuration.

17.1 Package directory

First of all, create a directory under the package directory for your software, for example libfoo.

Some packages have been grouped by topic in a sub-directory: x11r7, efl and matchbox. If your package fits in one of
these categories, then create your package directory in these. New subdirectories are discouraged, however.

17.2 Config.in file

Then, create a file named Config.in. This file will contain the option descriptions related to our libfoo software that will
be used and displayed in the configuration tool. It should basically contain:

config BR2_PACKAGE_LIBFOO
bool "libfoo"
help
This is a comment that explains what libfoo is.

http://foosoftware.org/libfoo/

The bool line, help line and other metadata information about the configuration option must be indented with one tab. The
help text itself should be indented with one tab and two spaces, and it must mention the upstream URL of the project.

You can add other sub-options into a if BR2_PACKAGE_LIBFOO...endif statement to configure particular things in your
software. You can look at examples in other packages. The syntax of the Config.in file is the same as the one for the kernel
Kconfig file. The documentation for this syntax is available at http://kernel.org/doc/Documentation/kbuild/kconfig-language.txt

Finally you have to add your new libfoo/Config.in to package/Config.in (or in a category subdirectory if you
decided to put your package in one of the existing categories). The files included there are sorted alphabetically per category and
are NOT supposed to contain anything but the bare name of the package.

source "package/libfoo/Config.in"

17.2.1 Choosing depends on or select

The Config.in file of your package must also ensure that dependencies are enabled. Typically, Buildroot uses the following
rules:

http://kernel.org/doc/Documentation/kbuild/kconfig-language.txt

The Buildroot user manual 48 / 116

• Use a select type of dependency for dependencies on libraries. These dependencies are generally not obvious and it therefore
make sense to have the kconfig system ensure that the dependencies are selected. For example, the libgtk2 package uses sele
ct BR2_PACKAGE_LIBGLIB2 to make sure this library is also enabled. The select keyword expresses the dependency
with a backward semantic.

• Use a depends on type of dependency when the user really needs to be aware of the dependency. Typically, Buildroot uses
this type of dependency for dependencies on target architecture, MMU support and toolchain options (see Section 17.2.2), or
for dependencies on "big" things, such as the X.org system. The depends on keyword expresses the dependency with a
forward semantic.

Note The current problem with the kconfig language is that these two dependency semantics are not internally linked. Therefore,
it may be possible to select a package, whom one of its dependencies/requirement is not met.

An example illustrates both the usage of select and depends on.

config BR2_PACKAGE_ACL
bool "acl"
select BR2_PACKAGE_ATTR
depends on BR2_LARGEFILE
help
POSIX Access Control Lists, which are used to define more
fine-grained discretionary access rights for files and
directories.
This package also provides libacl.

http://savannah.nongnu.org/projects/acl

comment "acl needs a toolchain w/ largefile"
depends on !BR2_LARGEFILE

Note that these two dependency types are only transitive with the dependencies of the same kind.

This means, in the following example:

config BR2_PACKAGE_A
bool "Package A"

config BR2_PACKAGE_B
bool "Package B"
depends on BR2_PACKAGE_A

config BR2_PACKAGE_C
bool "Package C"
depends on BR2_PACKAGE_B

config BR2_PACKAGE_D
bool "Package D"
select BR2_PACKAGE_B

config BR2_PACKAGE_E
bool "Package E"
select BR2_PACKAGE_D

• Selecting Package C will be visible if Package B has been selected, which in turn is only visible if Package A has been
selected.

• Selecting Package E will select Package D, which will select Package B, it will not check for the dependencies of
Package B, so it will not select Package A.

• Since Package B is selected but Package A is not, this violates the dependency of Package B on Package A. There-
fore, in such a situation, the transitive dependency has to be added explicitly:

The Buildroot user manual 49 / 116

config BR2_PACKAGE_D
bool "Package D"
select BR2_PACKAGE_B
depends on BR2_PACKAGE_A

config BR2_PACKAGE_E
bool "Package E"
select BR2_PACKAGE_D
depends on BR2_PACKAGE_A

Overall, for package library dependencies, select should be preferred.

Note that such dependencies will ensure that the dependency option is also enabled, but not necessarily built before your package.
To do so, the dependency also needs to be expressed in the .mk file of the package.

Further formatting details: see the coding style Section 15.1.

17.2.2 Dependencies on target and toolchain options

Many packages depend on certain options of the toolchain: the choice of C library, C++ support, largefile support, thread
support, RPC support, IPv6 support, wchar support, or dynamic library support. Some packages can only be built on certain
target architectures, or if an MMU is available in the processor.

These dependencies have to be expressed with the appropriate depends on statements in the Config.in file. Additionally, for
dependencies on toolchain options, a comment should be displayed when the option is not enabled, so that the user knows why
the package is not available. Dependencies on target architecture or MMU support should not be made visible in a comment:
since it is unlikely that the user can freely choose another target, it makes little sense to show these dependencies explicitly.

The comment should only be visible if the config option itself would be visible when the toolchain option dependencies are
met. This means that all other dependencies of the package (including dependencies on target architecture and MMU support)
have to be repeated on the comment definition. To keep it clear, the depends on statement for these non-toolchain option
should be kept separate from the depends on statement for the toolchain options. If there is a dependency on a config option
in that same file (typically the main package) it is preferable to have a global if ... endif construct rather than repeating
the depends on statement on the comment and other config options.

The general format of a dependency comment for package foo is:

foo needs a toolchain w/ featA, featB, featC

for example:

aircrack-ng needs a toolchain w/ largefile, threads

or

crda needs a toolchain w/ threads

Note that this text is kept brief on purpose, so that it will fit on a 80-character terminal.

The rest of this section enumerates the different target and toolchain options, the corresponding config symbols to depend on,
and the text to use in the comment.

• Target architecture

– Dependency symbol: BR2_powerpc, BR2_mips, . . . (see arch/Config.in)

– Comment string: no comment to be added

• MMU support

– Dependency symbol: BR2_USE_MMU

The Buildroot user manual 50 / 116

– Comment string: no comment to be added

• Atomic instructions (whereby the architecture has instructions to perform some operations atomically, like LOCKCMPXCHG
on x86)

– Dependency symbol: BR2_ARCH_HAS_ATOMICS
– Comment string: no comment to be added

• Kernel headers

– Dependency symbol: BR2_TOOLCHAIN_HEADERS_AT_LEAST_X_Y, (replace X_Y with the proper version, see toolc
hain/toolchain-common.in)

– Comment string: headers >=X.Y and/or headers <=X.Y (replace X.Y with the proper version)

• C library

– Dependency symbol: BR2_TOOLCHAIN_USES_GLIBC, BR2_TOOLCHAIN_USES_MUSL, BR2_TOOLCHAIN_USES_
UCLIBC

– Comment string: for the C library, a slightly different comment text is used: foo needs an (e)glibc toolchain,
or foo needs an (e)glibc toolchain w/C++

• C++ support

– Dependency symbol: BR2_INSTALL_LIBSTDCPP
– Comment string: C++

• largefile support

– Dependency symbol: BR2_LARGEFILE
– Comment string: largefile

• thread support

– Dependency symbol: BR2_TOOLCHAIN_HAS_THREADS
– Comment string: threads (unless BR2_TOOLCHAIN_HAS_THREADS_NPTL is also needed, in which case, specifying

only NPTL is sufficient)

• NPTL thread support

– Dependency symbol: BR2_TOOLCHAIN_HAS_THREADS_NPTL
– Comment string: NPTL

• RPC support

– Dependency symbol: BR2_TOOLCHAIN_HAS_NATIVE_RPC
– Comment string: RPC

• IPv6 support

– Dependency symbol: BR2_INET_IPV6
– Comment string: IPv6 (lowercase v)

• wchar support

– Dependency symbol: BR2_USE_WCHAR
– Comment string: wchar

• dynamic library

– Dependency symbol: !BR2_PREFER_STATIC_LIB
– Comment string: dynamic library

The Buildroot user manual 51 / 116

17.2.3 Dependencies on a Linux kernel built by buildroot

Some packages need a Linux kernel to be built by buildroot. These are typically kernel modules or firmware. A comment should
be added in the Config.in file to express this dependency, similar to dependencies on toolchain options. The general format is:

foo needs a Linux kernel to be built

If there is a dependency on both toolchain options and the Linux kernel, use this format:

foo needs a toolchain w/ featA, featB, featC and a Linux kernel to be built

17.2.4 Dependencies on udev /dev management

If a package needs udev /dev management, it should depend on symbol BR2_PACKAGE_HAS_UDEV, and the following com-
ment should be added:

foo needs udev /dev management

If there is a dependency on both toolchain options and udev /dev management, use this format:

foo needs udev /dev management and a toolchain w/ featA, featB, featC

17.2.5 Dependencies on features provided by virtual packages

Some features can be provided by more than one package, such as the openGL libraries.

See [?simpara] for more on the virtual packages.

See Chapter 25 for the symbols to depend on if your package depends on a feature provided by a virtual package.

17.3 The .mk file

Finally, here’s the hardest part. Create a file named libfoo.mk. It describes how the package should be downloaded, config-
ured, built, installed, etc.

Depending on the package type, the .mk file must be written in a different way, using different infrastructures:

• Makefiles for generic packages (not using autotools or CMake): These are based on an infrastructure similar to the one used
for autotools-based packages, but require a little more work from the developer. They specify what should be done for the
configuration, compilation and installation of the package. This infrastructure must be used for all packages that do not use
the autotools as their build system. In the future, other specialized infrastructures might be written for other build systems. We
cover them through in a tutorial Section 17.5.1 and a reference Section 17.5.2.

• Makefiles for autotools-based software (autoconf, automake, etc.): We provide a dedicated infrastructure for such packages,
since autotools is a very common build system. This infrastructure must be used for new packages that rely on the autotools as
their build system. We cover them through a tutorial Section 17.6.1 and reference Section 17.6.2.

• Makefiles for cmake-based software: We provide a dedicated infrastructure for such packages, as CMake is a more and more
commonly used build system and has a standardized behaviour. This infrastructure must be used for new packages that rely on
CMake. We cover them through a tutorial Section 17.7.1 and reference Section 17.7.2.

• Makefiles for Python modules: We have a dedicated infrastructure for Python modules that use either the distutils or
the setuptools mechanism. We cover them through a tutorial Section 17.8.1 and a reference Section 17.8.2.

• Makefiles for Lua modules: We have a dedicated infrastructure for Lua modules available through the LuaRocks web site.
We cover them through a tutorial Section 17.9.1 and a reference Section 17.9.2.

Further formatting details: see the writing rules Section 15.2.

The Buildroot user manual 52 / 116

17.4 The .hash file

Optionally, you can add a third file, named libfoo.hash, that contains the hashes of the downloaded files for the libfoo
package.

The hashes stored in that file are used to validate the integrity of the downloaded files.

The format of this file is one line for each file for which to check the hash, each line being space-separated, with these three
fields:

• the type of hash, one of:

– sha1, sha224, sha256, sha384, sha512

• the hash of the file:

– for sha1, 40 hexadecimal characters

– for sha224, 56 hexadecimal characters

– for sha256, 64 hexadecimal characters

– for sha384, 96 hexadecimal characters

– for sha512, 128 hexadecimal characters

• the name of the file, without any directory component

Lines starting with a # sign are considered comments, and ignored. Empty lines are ignored.

There can be more than one hash for a single file, each on its own line. In this case, all hashes must match.

Ideally, the hashes stored in this file should match the hashes published by upstream, e.g. on their website, in the e-mail
announcement. . . If upstream provides more than one type of hash (say, sha1 and sha512), then it is best to add all those
hashes in the .hash file. If upstream does not provide any hash, then compute at least one yourself, and mention this in a
comment line above the hashes.

Note: the number of spaces does not matter, so one can use spaces to properly align the different fields.

The example below defines a sha1 and a sha256 published by upstream for the main libfoo-1.2.3.tar.bz2 tarball,
plus two locally-computed hashes, a sha256 for a downloaded patch, and a sha1 for a downloaded binary blob:

Hashes from: http://www.foosoftware.org/download/libfoo-1.2.3.tar.bz2.{sha1,sha256}:
sha1 486fb55c3efa71148fe07895fd713ea3a5ae343a libfoo-1.2.3.tar. ←↩

bz2
sha256 efc8103cc3bcb06bda6a781532d12701eb081ad83e8f90004b39ab81b65d4369 libfoo-1.2.3.tar. ←↩

bz2

No upstream hashes for the following:
sha256 ff52101fb90bbfc3fe9475e425688c660f46216d7e751c4bbdb1dc85cdccacb9 libfoo-fix-blabla. ←↩

patch
sha1 2d608f3c318c6b7557d551a5a09314f03452f1a1 libfoo-data.bin

If the .hash file is present, and it contains one or more hashes for a downloaded file, the hash(es) computed by Buildroot (after
download) must match the hash(es) stored in the .hash file. If one or more hashes do not match, Buildroot considers this an
error, deletes the downloaded file, and aborts.

If the .hash file is present, but it does not contain a hash for a downloaded file, no check is done for that file. If you set
the environment variable BR2_ENFORCE_CHECK_HASH to a non-empty value, and there is no hash for a downloaded file,
Buildroot considers this an error, deletes the downloaded file, and aborts.

If the .hash file is missing, then no check is done at all.

The Buildroot user manual 53 / 116

17.5 Infrastructure for packages with specific build systems

By packages with specific build systems we mean all the packages whose build system is not one of the standard ones, such as
autotools or CMake. This typically includes packages whose build system is based on hand-written Makefiles or shell scripts.

17.5.1 generic-package tutorial

01: ##
02: #
03: # libfoo
04: #
05: ##
06:
07: LIBFOO_VERSION = 1.0
08: LIBFOO_SOURCE = libfoo-$(LIBFOO_VERSION).tar.gz
09: LIBFOO_SITE = http://www.foosoftware.org/download
10: LIBFOO_LICENSE = GPLv3+
11: LIBFOO_LICENSE_FILES = COPYING
12: LIBFOO_INSTALL_STAGING = YES
13: LIBFOO_CONFIG_SCRIPTS = libfoo-config
14: LIBFOO_DEPENDENCIES = host-libaaa libbbb
15:
16: define LIBFOO_BUILD_CMDS
17: $(MAKE) CC="$(TARGET_CC)" LD="$(TARGET_LD)" -C $(@D) all
18: endef
19:
20: define LIBFOO_INSTALL_STAGING_CMDS
21: $(INSTALL) -D -m 0755 $(@D)/libfoo.a $(STAGING_DIR)/usr/lib/libfoo.a
22: $(INSTALL) -D -m 0644 $(@D)/foo.h $(STAGING_DIR)/usr/include/foo.h
23: $(INSTALL) -D -m 0755 $(@D)/libfoo.so* $(STAGING_DIR)/usr/lib
24: endef
25:
26: define LIBFOO_INSTALL_TARGET_CMDS
27: $(INSTALL) -D -m 0755 $(@D)/libfoo.so* $(TARGET_DIR)/usr/lib
28: $(INSTALL) -d -m 0755 $(TARGET_DIR)/etc/foo.d
29: endef
30:
31: define LIBFOO_DEVICES
32: /dev/foo c 666 0 0 42 0 - - -
33: endef
34:
35: define LIBFOO_PERMISSIONS
36: /bin/foo f 4755 0 0 - - - - -
37: endef
38:
39: define LIBFOO_USERS
40: foo -1 libfoo -1 * - - - LibFoo daemon
41: endef
42:
43: $(eval $(generic-package))

The Makefile begins on line 7 to 11 with metadata information: the version of the package (LIBFOO_VERSION), the name of
the tarball containing the package (LIBFOO_SOURCE) (xz-ed tarball recommended) the Internet location at which the tarball
can be downloaded from (LIBFOO_SITE), the license (LIBFOO_LICENSE) and file with the license text (LIBFOO_LICENS
E_FILES). All variables must start with the same prefix, LIBFOO_ in this case. This prefix is always the uppercased version of
the package name (see below to understand where the package name is defined).

On line 12, we specify that this package wants to install something to the staging space. This is often needed for libraries, since
they must install header files and other development files in the staging space. This will ensure that the commands listed in the
LIBFOO_INSTALL_STAGING_CMDS variable will be executed.

The Buildroot user manual 54 / 116

On line 13, we specify that there is some fixing to be done to some of the libfoo-config files that were installed during LIB
FOO_INSTALL_STAGING_CMDS phase. These *-config files are executable shell script files that are located in $(STAG-
ING_DIR)/usr/bin directory and are executed by other 3rd party packages to find out the location and the linking flags of this
particular package.

The problem is that all these *-config files by default give wrong, host system linking flags that are unsuitable for cross-compiling.

For example: -I/usr/include instead of -I$(STAGING_DIR)/usr/include or: -L/usr/lib instead of -L$(STAGING_DIR)/usr/lib

So some sed magic is done to these scripts to make them give correct flags. The argument to be given to LIBFOO_CONFIG_S
CRIPTS is the file name(s) of the shell script(s) needing fixing. All these names are relative to $(STAGING_DIR)/usr/bin and if
needed multiple names can be given.

In addition, the scripts listed in LIBFOO_CONFIG_SCRIPTS are removed from $(TARGET_DIR)/usr/bin, since they are
not needed on the target.

Example 17.1 Config script: divine package
Package divine installs shell script $(STAGING_DIR)/usr/bin/divine-config.
So its fixup would be:

DIVINE_CONFIG_SCRIPTS = divine-config

Example 17.2 Config script: imagemagick package:
Package imagemagick installs the following scripts: $(STAGING_DIR)/usr/bin/{Magick,Magick++,MagickCore,MagickWand,Wand}-
config
So it’s fixup would be:

IMAGEMAGICK_CONFIG_SCRIPTS = \
Magick-config Magick++-config \
MagickCore-config MagickWand-config Wand-config

On line 14, we specify the list of dependencies this package relies on. These dependencies are listed in terms of lower-case
package names, which can be packages for the target (without the host- prefix) or packages for the host (with the host-)
prefix). Buildroot will ensure that all these packages are built and installed before the current package starts its configuration.

The rest of the Makefile, lines 16..29, defines what should be done at the different steps of the package configuration, compilation
and installation. LIBFOO_BUILD_CMDS tells what steps should be performed to build the package. LIBFOO_INSTALL_ST
AGING_CMDS tells what steps should be performed to install the package in the staging space. LIBFOO_INSTALL_TARGET
_CMDS tells what steps should be performed to install the package in the target space.

All these steps rely on the $(@D) variable, which contains the directory where the source code of the package has been extracted.

On line 31..33, we define a device-node file used by this package (LIBFOO_DEVICES).

On line 35..37, we define the permissions to set to specific files installed by this package (LIBFOO_PERMISSIONS).

On lines 39..41, we define a user that is used by this package (e.g. to run a daemon as non-root) (LIBFOO_USERS).

Finally, on line 43, we call the generic-package function, which generates, according to the variables defined previously,
all the Makefile code necessary to make your package working.

17.5.2 generic-package reference

There are two variants of the generic target. The generic-package macro is used for packages to be cross-compiled for the
target. The host-generic-package macro is used for host packages, natively compiled for the host. It is possible to call
both of them in a single .mk file: once to create the rules to generate a target package and once to create the rules to generate a
host package:

$(eval $(generic-package))
$(eval $(host-generic-package))

The Buildroot user manual 55 / 116

This might be useful if the compilation of the target package requires some tools to be installed on the host. If the package name
is libfoo, then the name of the package for the target is also libfoo, while the name of the package for the host is host-
libfoo. These names should be used in the DEPENDENCIES variables of other packages, if they depend on libfoo or
host-libfoo.

The call to the generic-package and/or host-generic-package macro must be at the end of the .mk file, after all
variable definitions.

For the target package, the generic-package uses the variables defined by the .mk file and prefixed by the uppercased
package name: LIBFOO_*. host-generic-package uses the HOST_LIBFOO_* variables. For some variables, if the
HOST_LIBFOO_ prefixed variable doesn’t exist, the package infrastructure uses the corresponding variable prefixed by LIBF
OO_. This is done for variables that are likely to have the same value for both the target and host packages. See below for details.

The list of variables that can be set in a .mk file to give metadata information is (assuming the package name is libfoo) :

• LIBFOO_VERSION, mandatory, must contain the version of the package. Note that if HOST_LIBFOO_VERSION doesn’t
exist, it is assumed to be the same as LIBFOO_VERSION. It can also be a revision number, branch or tag for packages that are
fetched directly from their revision control system.
Examples:
LIBFOO_VERSION =0.1.2
LIBFOO_VERSION =cb9d6aa9429e838f0e54faa3d455bcbab5eef057
LIBFOO_VERSION =stable

• LIBFOO_SOURCE may contain the name of the tarball of the package. If HOST_LIBFOO_SOURCE is not specified, it
defaults to LIBFOO_SOURCE. If none are specified, then the value is assumed to be libfoo-$(LIBFOO_VERSION).
tar.gz.
Example: LIBFOO_SOURCE =foobar-$(LIBFOO_VERSION).tar.bz2

• LIBFOO_PATCH may contain a space-separated list of patch file names, that will be downloaded from the same location as
the tarball indicated in LIBFOO_SOURCE, and then applied to the package source code. If HOST_LIBFOO_PATCH is not
specified, it defaults to LIBFOO_PATCH. Note that patches that are included in Buildroot itself use a different mechanism:
all files of the form <packagename>-*.patch present in the package directory inside Buildroot will be applied to the
package after extraction (see patching a package Chapter 18). Finally, patches listed in the LIBFOO_PATCH variable are
applied before the patches stored in the Buildroot package directory.

• LIBFOO_SITE provides the location of the package, which can be a URL or a local filesystem path. HTTP, FTP and SCP
are supported URL types for retrieving package tarballs. Git, Subversion, Mercurial, and Bazaar are supported URL types for
retrieving packages directly from source code management systems. There is a helper function to make it easier to download
source tarballs from GitHub (refer to Section 17.16.2 for details). A filesystem path may be used to specify either a tarball or a
directory containing the package source code. See LIBFOO_SITE_METHOD below for more details on how retrieval works.
Note that SCP URLs should be of the form scp://[user@]host:filepath, and that filepath is relative to the user’s
home directory, so you may want to prepend the path with a slash for absolute paths: scp://[user@]host:/absolute
path.
If HOST_LIBFOO_SITE is not specified, it defaults to LIBFOO_SITE. Examples:
LIBFOO_SITE=http://www.libfoosoftware.org/libfoo
LIBFOO_SITE=http://svn.xiph.org/trunk/Tremor/
LIBFOO_SITE=/opt/software/libfoo.tar.gz
LIBFOO_SITE=$(TOPDIR)/../src/libfoo/

• LIBFOO_EXTRA_DOWNLOADS lists a number of additional files that Buildroot should download from LIBFOO_SITE in
addition to the main LIBFOO_SOURCE (which usually is a tarball). Buildroot will not do anything with those additional files,
except download files: it will be up to the package recipe to use them from $(BR2_DL_DIR).

• LIBFOO_SITE_METHOD determines the method used to fetch or copy the package source code. In many cases, Buildroot
guesses the method from the contents of LIBFOO_SITE and setting LIBFOO_SITE_METHOD is unnecessary. When HOST
_LIBFOO_SITE_METHOD is not specified, it defaults to the value of LIBFOO_SITE_METHOD.
The possible values of LIBFOO_SITE_METHOD are:

– wget for normal FTP/HTTP downloads of tarballs. Used by default when LIBFOO_SITE begins with http://, https:
// or ftp://.

The Buildroot user manual 56 / 116

– scp for downloads of tarballs over SSH with scp. Used by default when LIBFOO_SITE begins with scp://.

– svn for retrieving source code from a Subversion repository. Used by default when LIBFOO_SITE begins with svn:/
/. When a http:// Subversion repository URL is specified in LIBFOO_SITE, one must specify LIBFOO_SITE_MET
HOD=svn. Buildroot performs a checkout which is preserved as a tarball in the download cache; subsequent builds use the
tarball instead of performing another checkout.

– cvs for retrieving source code from a CVS repository. Used by default when LIBFOO_SITE begins with cvs://. The
downloaded source code is cached as with the svn method. Only anonymous pserver mode is supported. LIBFOO_SITE
must contain the source URL as well as the remote repository directory. The module is the package name. LIBFOO_VERS
ION is mandatory and must be a timestamp.

– git for retrieving source code from a Git repository. Used by default when LIBFOO_SITE begins with git://. The
downloaded source code is cached as with the svn method.

– hg for retrieving source code from a Mercurial repository. One must specify LIBFOO_SITE_METHOD=hg when LIBFO
O_SITE contains a Mercurial repository URL. The downloaded source code is cached as with the svn method.

– bzr for retrieving source code from a Bazaar repository. Used by default when LIBFOO_SITE begins with bzr://. The
downloaded source code is cached as with the svn method.

– file for a local tarball. One should use this when LIBFOO_SITE specifies a package tarball as a local filename. Useful
for software that isn’t available publicly or in version control.

– local for a local source code directory. One should use this when LIBFOO_SITE specifies a local directory path contain-
ing the package source code. Buildroot copies the contents of the source directory into the package’s build directory.

• LIBFOO_DEPENDENCIES lists the dependencies (in terms of package name) that are required for the current target package
to compile. These dependencies are guaranteed to be compiled and installed before the configuration of the current package
starts. In a similar way, HOST_LIBFOO_DEPENDENCIES lists the dependencies for the current host package.

• LIBFOO_PROVIDES lists all the virtual packages libfoo is an implementation of. See [?simpara].

• LIBFOO_INSTALL_STAGING can be set to YES or NO (default). If set to YES, then the commands in the LIBFOO_INST
ALL_STAGING_CMDS variables are executed to install the package into the staging directory.

• LIBFOO_INSTALL_TARGET can be set to YES (default) or NO. If set to YES, then the commands in the LIBFOO_INSTAL
L_TARGET_CMDS variables are executed to install the package into the target directory.

• LIBFOO_CONFIG_SCRIPTS lists the names of the files in $(STAGING_DIR)/usr/bin that need some special fixing to
make them cross-compiling friendly. Multiple file names separated by space can be given and all are relative to $(STAG-
ING_DIR)/usr/bin. The files listed in LIBFOO_CONFIG_SCRIPTS are also removed from $(TARGET_DIR)/usr/bin
since they are not needed on the target.

• LIBFOO_DEVICES lists the device files to be created by Buildroot when using the static device table. The syntax to use is
the makedevs one. You can find some documentation for this syntax in the Chapter 22. This variable is optional.

• LIBFOO_PERMISSIONS lists the changes of permissions to be done at the end of the build process. The syntax is once again
the makedevs one. You can find some documentation for this syntax in the Chapter 22. This variable is optional.

• LIBFOO_USERS lists the users to create for this package, if it installs a program you want to run as a specific user (e.g. as a
daemon, or as a cron-job). The syntax is similar in spirit to the makedevs one, and is described in the Chapter 23. This variable
is optional.

• LIBFOO_LICENSE defines the license (or licenses) under which the package is released. This name will appear in the
manifest file produced by make legal-info. If the license appears in the following list Section 12.2, use the same string
to make the manifest file uniform. Otherwise, describe the license in a precise and concise way, avoiding ambiguous names
such as BSD which actually name a family of licenses. This variable is optional. If it is not defined, unknown will appear in
the license field of the manifest file for this package.

• LIBFOO_LICENSE_FILES is a space-separated list of files in the package tarball that contain the license(s) under which the
package is released. make legal-info copies all of these files in the legal-info directory. See Chapter 12 for more
information. This variable is optional. If it is not defined, a warning will be produced to let you know, and not saved will
appear in the license files field of the manifest file for this package.

The Buildroot user manual 57 / 116

• LIBFOO_REDISTRIBUTE can be set to YES (default) or NO to indicate if the package source code is allowed to be redis-
tributed. Set it to NO for non-opensource packages: Buildroot will not save the source code for this package when collecting
the legal-info.

• LIBFOO_FLAT_STACKSIZE defines the stack size of an application built into the FLAT binary format. The application
stack size on the NOMMU architecture processors can’t be enlarged at run time. The default stack size for the FLAT binary
format is only 4k bytes. If the application consumes more stack, append the required number here.

The recommended way to define these variables is to use the following syntax:

LIBFOO_VERSION = 2.32

Now, the variables that define what should be performed at the different steps of the build process.

• LIBFOO_EXTRACT_CMDS lists the actions to be performed to extract the package. This is generally not needed as tarballs are
automatically handled by Buildroot. However, if the package uses a non-standard archive format, such as a ZIP or RAR file,
or has a tarball with a non-standard organization, this variable allows to override the package infrastructure default behavior.

• LIBFOO_CONFIGURE_CMDS lists the actions to be performed to configure the package before its compilation.

• LIBFOO_BUILD_CMDS lists the actions to be performed to compile the package.

• HOST_LIBFOO_INSTALL_CMDS lists the actions to be performed to install the package, when the package is a host package.
The package must install its files to the directory given by $(HOST_DIR). All files, including development files such as
headers should be installed, since other packages might be compiled on top of this package.

• LIBFOO_INSTALL_TARGET_CMDS lists the actions to be performed to install the package to the target directory, when the
package is a target package. The package must install its files to the directory given by $(TARGET_DIR). Only the files
required for execution of the package have to be installed. Header files, static libraries and documentation will be removed
again when the target filesystem is finalized.

• LIBFOO_INSTALL_STAGING_CMDS lists the actions to be performed to install the package to the staging directory, when
the package is a target package. The package must install its files to the directory given by $(STAGING_DIR). All develop-
ment files should be installed, since they might be needed to compile other packages.

• LIBFOO_INSTALL_IMAGES_CMDS lists the actions to be performed to install the package to the images directory, when
the package is a target package. The package must install its files to the directory given by $(BINARIES_DIR). Only files
that are binary images (aka images) that do not belong in the TARGET_DIR but are necessary for booting the board should
be placed here. For example, a package should utilize this step if it has binaries which would be similar to the kernel image,
bootloader or root filesystem images.

• LIBFOO_INSTALL_INIT_SYSV and LIBFOO_INSTALL_INIT_SYSTEMD list the actions to install init scripts either for
the systemV-like init systems (busybox, sysvinit, etc.) or for the systemd units. These commands will be run only when the
relevant init system is installed (i.e. if systemd is selected as the init system in the configuration, only LIBFOO_INSTALL_I
NIT_SYSTEMD will be run).

The preferred way to define these variables is:

define LIBFOO_CONFIGURE_CMDS
action 1
action 2
action 3

endef

In the action definitions, you can use the following variables:

• $(@D), which contains the directory in which the package source code has been uncompressed.

• $(TARGET_CC), $(TARGET_LD), etc. to get the target cross-compilation utilities

• $(TARGET_CROSS) to get the cross-compilation toolchain prefix

• Of course the $(HOST_DIR), $(STAGING_DIR) and $(TARGET_DIR) variables to install the packages properly.

Finally, you can also use hooks. See Section 17.14 for more information.

The Buildroot user manual 58 / 116

17.6 Infrastructure for autotools-based packages

17.6.1 autotools-package tutorial

First, let’s see how to write a .mk file for an autotools-based package, with an example :

01: ##
02: #
03: # libfoo
04: #
05: ##
06:
07: LIBFOO_VERSION = 1.0
08: LIBFOO_SOURCE = libfoo-$(LIBFOO_VERSION).tar.gz
09: LIBFOO_SITE = http://www.foosoftware.org/download
10: LIBFOO_INSTALL_STAGING = YES
11: LIBFOO_INSTALL_TARGET = NO
12: LIBFOO_CONF_OPTS = --disable-shared
13: LIBFOO_DEPENDENCIES = libglib2 host-pkgconf
14:
15: $(eval $(autotools-package))

On line 7, we declare the version of the package.

On line 8 and 9, we declare the name of the tarball (xz-ed tarball recommended) and the location of the tarball on the Web.
Buildroot will automatically download the tarball from this location.

On line 10, we tell Buildroot to install the package to the staging directory. The staging directory, located in output/stag
ing/ is the directory where all the packages are installed, including their development files, etc. By default, packages are not
installed to the staging directory, since usually, only libraries need to be installed in the staging directory: their development files
are needed to compile other libraries or applications depending on them. Also by default, when staging installation is enabled,
packages are installed in this location using the make install command.

On line 11, we tell Buildroot to not install the package to the target directory. This directory contains what will become the root
filesystem running on the target. For purely static libraries, it is not necessary to install them in the target directory because they
will not be used at runtime. By default, target installation is enabled; setting this variable to NO is almost never needed. Also by
default, packages are installed in this location using the make install command.

On line 12, we tell Buildroot to pass a custom configure option, that will be passed to the ./configure script before config-
uring and building the package.

On line 13, we declare our dependencies, so that they are built before the build process of our package starts.

Finally, on line line 15, we invoke the autotools-package macro that generates all the Makefile rules that actually allows
the package to be built.

17.6.2 autotools-package reference

The main macro of the autotools package infrastructure is autotools-package. It is similar to the generic-package
macro. The ability to have target and host packages is also available, with the host-autotools-package macro.

Just like the generic infrastructure, the autotools infrastructure works by defining a number of variables before calling the auto
tools-package macro.

First, all the package metadata information variables that exist in the generic infrastructure also exist in the autotools infrastruc-
ture: LIBFOO_VERSION, LIBFOO_SOURCE, LIBFOO_PATCH, LIBFOO_SITE, LIBFOO_SUBDIR, LIBFOO_DEPENDE
NCIES, LIBFOO_INSTALL_STAGING, LIBFOO_INSTALL_TARGET.

A few additional variables, specific to the autotools infrastructure, can also be defined. Many of them are only useful in very
specific cases, typical packages will therefore only use a few of them.

The Buildroot user manual 59 / 116

• LIBFOO_SUBDIRmay contain the name of a subdirectory inside the package that contains the configure script. This is useful,
if for example, the main configure script is not at the root of the tree extracted by the tarball. If HOST_LIBFOO_SUBDIR is
not specified, it defaults to LIBFOO_SUBDIR.

• LIBFOO_CONF_ENV, to specify additional environment variables to pass to the configure script. By default, empty.

• LIBFOO_CONF_OPTS, to specify additional configure options to pass to the configure script. By default, empty.

• LIBFOO_MAKE, to specify an alternate make command. This is typically useful when parallel make is enabled in the con-
figuration (using BR2_JLEVEL) but that this feature should be disabled for the given package, for one reason or another.
By default, set to $(MAKE). If parallel building is not supported by the package, then it should be set to LIBFOO_MAKE=
$(MAKE1).

• LIBFOO_MAKE_ENV, to specify additional environment variables to pass to make in the build step. These are passed before
the make command. By default, empty.

• LIBFOO_MAKE_OPTS, to specify additional variables to pass to make in the build step. These are passed after the make
command. By default, empty.

• LIBFOO_AUTORECONF, tells whether the package should be autoreconfigured or not (i.e. if the configure script and Make-
file.in files should be re-generated by re-running autoconf, automake, libtool, etc.). Valid values are YES and NO. By default,
the value is NO

• LIBFOO_AUTORECONF_ENV, to specify additional environment variables to pass to the autoreconf program if LIBFOO_A
UTORECONF=YES. These are passed in the environment of the autoreconf command. By default, empty.

• LIBFOO_AUTORECONF_OPTS to specify additional options passed to the autoreconf program if LIBFOO_AUTORECONF=
YES. By default, empty.

• LIBFOO_GETTEXTIZE, tells whether the package should be gettextized or not (i.e. if the package uses a different gettext
version than Buildroot provides, and it is needed to run gettextize.) Only valid when LIBFOO_AUTORECONF=YES. Valid
values are YES and NO. The default is NO.

• LIBFOO_GETTEXTIZE_OPTS, to specify additional options passed to the gettextize program, if LIBFOO_GETTEXTIZE=
YES. You may use that if, for example, the .po files are not located in the standard place (i.e. in po/ at the root of the
package.) By default, -f.

• LIBFOO_LIBTOOL_PATCH tells whether the Buildroot patch to fix libtool cross-compilation issues should be applied or not.
Valid values are YES and NO. By default, the value is YES

• LIBFOO_INSTALL_STAGING_OPTS contains the make options used to install the package to the staging directory. By
default, the value is DESTDIR=$(STAGING_DIR) install, which is correct for most autotools packages. It is still
possible to override it.

• LIBFOO_INSTALL_TARGET_OPTS contains the make options used to install the package to the target directory. By default,
the value is DESTDIR=$(TARGET_DIR) install. The default value is correct for most autotools packages, but it is still
possible to override it if needed.

With the autotools infrastructure, all the steps required to build and install the packages are already defined, and they generally
work well for most autotools-based packages. However, when required, it is still possible to customize what is done in any
particular step:

• By adding a post-operation hook (after extract, patch, configure, build or install). See Section 17.14 for details.

• By overriding one of the steps. For example, even if the autotools infrastructure is used, if the package .mk file defines its
own LIBFOO_CONFIGURE_CMDS variable, it will be used instead of the default autotools one. However, using this method
should be restricted to very specific cases. Do not use it in the general case.

The Buildroot user manual 60 / 116

17.7 Infrastructure for CMake-based packages

17.7.1 cmake-package tutorial

First, let’s see how to write a .mk file for a CMake-based package, with an example :

01: ##
02: #
03: # libfoo
04: #
05: ##
06:
07: LIBFOO_VERSION = 1.0
08: LIBFOO_SOURCE = libfoo-$(LIBFOO_VERSION).tar.gz
09: LIBFOO_SITE = http://www.foosoftware.org/download
10: LIBFOO_INSTALL_STAGING = YES
11: LIBFOO_INSTALL_TARGET = NO
12: LIBFOO_CONF_OPTS = -DBUILD_DEMOS=ON
13: LIBFOO_DEPENDENCIES = libglib2 host-pkgconf
14:
15: $(eval $(cmake-package))

On line 7, we declare the version of the package.

On line 8 and 9, we declare the name of the tarball (xz-ed tarball recommended) and the location of the tarball on the Web.
Buildroot will automatically download the tarball from this location.

On line 10, we tell Buildroot to install the package to the staging directory. The staging directory, located in output/stag
ing/ is the directory where all the packages are installed, including their development files, etc. By default, packages are not
installed to the staging directory, since usually, only libraries need to be installed in the staging directory: their development files
are needed to compile other libraries or applications depending on them. Also by default, when staging installation is enabled,
packages are installed in this location using the make install command.

On line 11, we tell Buildroot to not install the package to the target directory. This directory contains what will become the root
filesystem running on the target. For purely static libraries, it is not necessary to install them in the target directory because they
will not be used at runtime. By default, target installation is enabled; setting this variable to NO is almost never needed. Also by
default, packages are installed in this location using the make install command.

On line 12, we tell Buildroot to pass custom options to CMake when it is configuring the package.

On line 13, we declare our dependencies, so that they are built before the build process of our package starts.

Finally, on line line 15, we invoke the cmake-package macro that generates all the Makefile rules that actually allows the
package to be built.

17.7.2 cmake-package reference

The main macro of the CMake package infrastructure is cmake-package. It is similar to the generic-package macro.
The ability to have target and host packages is also available, with the host-cmake-package macro.

Just like the generic infrastructure, the CMake infrastructure works by defining a number of variables before calling the cmake-
package macro.

First, all the package metadata information variables that exist in the generic infrastructure also exist in the CMake infrastruc-
ture: LIBFOO_VERSION, LIBFOO_SOURCE, LIBFOO_PATCH, LIBFOO_SITE, LIBFOO_SUBDIR, LIBFOO_DEPENDE
NCIES, LIBFOO_INSTALL_STAGING, LIBFOO_INSTALL_TARGET.

A few additional variables, specific to the CMake infrastructure, can also be defined. Many of them are only useful in very
specific cases, typical packages will therefore only use a few of them.

• LIBFOO_SUBDIR may contain the name of a subdirectory inside the package that contains the main CMakeLists.txt file. This
is useful, if for example, the main CMakeLists.txt file is not at the root of the tree extracted by the tarball. If HOST_LIBFOO
_SUBDIR is not specified, it defaults to LIBFOO_SUBDIR.

The Buildroot user manual 61 / 116

• LIBFOO_CONF_ENV, to specify additional environment variables to pass to CMake. By default, empty.

• LIBFOO_CONF_OPTS, to specify additional configure options to pass to CMake. By default, empty. A number of common
CMake options are set by the cmake-package infrastructure; so it is normally not necessary to set them in the package’s
*.mk file unless you want to override them:

– CMAKE_BUILD_TYPE is driven by BR2_ENABLE_DEBUG;

– CMAKE_INSTALL_PREFIX;

– BUILD_SHARED_LIBS is driven by BR2_PREFER_STATIC_LIBS;

– BUILD_DOC, BUILD_DOCS are disabled;

– BUILD_EXAMPLE, BUILD_EXAMPLES are disabled;

– BUILD_TEST, BUILD_TESTS, BUILD_TESTING are disabled.

• LIBFOO_MAKE, to specify an alternate make command. This is typically useful when parallel make is enabled in the con-
figuration (using BR2_JLEVEL) but that this feature should be disabled for the given package, for one reason or another.
By default, set to $(MAKE). If parallel building is not supported by the package, then it should be set to LIBFOO_MAKE=
$(MAKE1).

• LIBFOO_MAKE_ENV, to specify additional environment variables to pass to make in the build step. These are passed before
the make command. By default, empty.

• LIBFOO_MAKE_OPTS, to specify additional variables to pass to make in the build step. These are passed after the make
command. By default, empty.

• LIBFOO_INSTALL_STAGING_OPTS contains the make options used to install the package to the staging directory. By
default, the value is DESTDIR=$(STAGING_DIR) install, which is correct for most CMake packages. It is still possible
to override it.

• LIBFOO_INSTALL_TARGET_OPTS contains the make options used to install the package to the target directory. By default,
the value is DESTDIR=$(TARGET_DIR) install. The default value is correct for most CMake packages, but it is still
possible to override it if needed.

With the CMake infrastructure, all the steps required to build and install the packages are already defined, and they generally work
well for most CMake-based packages. However, when required, it is still possible to customize what is done in any particular
step:

• By adding a post-operation hook (after extract, patch, configure, build or install). See Section 17.14 for details.

• By overriding one of the steps. For example, even if the CMake infrastructure is used, if the package .mk file defines its own
LIBFOO_CONFIGURE_CMDS variable, it will be used instead of the default CMake one. However, using this method should
be restricted to very specific cases. Do not use it in the general case.

17.8 Infrastructure for Python packages

This infrastructure applies to Python packages that use the standard Python setuptools mechanism as their build system, generally
recognizable by the usage of a setup.py script.

17.8.1 python-package tutorial

First, let’s see how to write a .mk file for a Python package, with an example :

01: ##
02: #
03: # python-foo
04: #
05: ##

The Buildroot user manual 62 / 116

06:
07: PYTHON_FOO_VERSION = 1.0
08: PYTHON_FOO_SOURCE = python-foo-$(PYTHON_FOO_VERSION).tar.xz
09: PYTHON_FOO_SITE = http://www.foosoftware.org/download
10: PYTHON_FOO_LICENSE = BSD-3c
11: PYTHON_FOO_LICENSE_FILES = LICENSE
12: PYTHON_FOO_ENV = SOME_VAR=1
13: PYTHON_FOO_DEPENDENCIES = libmad
14: PYTHON_FOO_SETUP_TYPE = distutils
15:
16: $(eval $(python-package))

On line 7, we declare the version of the package.

On line 8 and 9, we declare the name of the tarball (xz-ed tarball recommended) and the location of the tarball on the Web.
Buildroot will automatically download the tarball from this location.

On line 10 and 11, we give licensing details about the package (its license on line 10, and the file containing the license text on
line 11).

On line 12, we tell Buildroot to pass custom options to the Python setup.py script when it is configuring the package.

On line 13, we declare our dependencies, so that they are built before the build process of our package starts.

On line 14, we declare the specific Python build system being used. In this case the distutils Python build system is used.
The two supported ones are distutils and setuptools.

Finally, on line 16, we invoke the python-package macro that generates all the Makefile rules that actually allow the package
to be built.

17.8.2 python-package reference

As a policy, packages that merely provide Python modules should all be named python-<something> in Buildroot. Other
packages that use the Python build system, but are not Python modules, can freely choose their name (existing examples in
Buildroot are scons and supervisor).

In their Config.in file, they should depend on BR2_PACKAGE_PYTHON so that when Buildroot will enable Python 3 usage
for modules, we will be able to enable Python modules progressively on Python 3.

The main macro of the Python package infrastructure is python-package. It is similar to the generic-package macro.
It is also possible to create Python host packages with the host-python-package macro.

Just like the generic infrastructure, the Python infrastructure works by defining a number of variables before calling the python-
package or host-python-package macros.

All the package metadata information variables that exist in the generic package infrastructure Section 17.5.2 also exist in the
Python infrastructure: PYTHON_FOO_VERSION, PYTHON_FOO_SOURCE, PYTHON_FOO_PATCH, PYTHON_FOO_SITE,
PYTHON_FOO_SUBDIR, PYTHON_FOO_DEPENDENCIES, PYTHON_FOO_LICENSE, PYTHON_FOO_LICENSE_FILES,
PYTHON_FOO_INSTALL_STAGING, etc.

Note that:

• It is not necessary to add python or host-python in the PYTHON_FOO_DEPENDENCIES variable of a package, since
these basic dependencies are automatically added as needed by the Python package infrastructure.

• Similarly, it is not needed to add host-setuptools and/or host-distutilscross dependencies to PYTHON_FOO_
DEPENDENCIES for setuptools-based packages, since these are automatically added by the Python infrastructure as needed.

One variable specific to the Python infrastructure is mandatory:

• PYTHON_FOO_SETUP_TYPE, to define which Python build system is used by the package. The two supported values are
distutils and setuptools. If you don’t know which one is used in your package, look at the setup.py file in your
package source code, and see whether it imports things from the distutils module or the setuptools module.

The Buildroot user manual 63 / 116

A few additional variables, specific to the Python infrastructure, can optionally be defined, depending on the package’s needs.
Many of them are only useful in very specific cases, typical packages will therefore only use a few of them, or none.

• PYTHON_FOO_ENV, to specify additional environment variables to pass to the Python setup.py script (for both the build
and install steps). Note that the infrastructure is automatically passing several standard variables, defined in PKG_PYTHON
_DISTUTILS_ENV (for distutils target packages), HOST_PKG_PYTHON_DISTUTILS_ENV (for distutils host packages),
PKG_PYTHON_SETUPTOOLS_ENV (for setuptools target packages) and HOST_PKG_PYTHON_SETUPTOOLS_ENV (for
setuptools host packages).

• PYTHON_FOO_BUILD_OPTS, to specify additional options to pass to the Python setup.py script during the build step.
For target distutils packages, the PKG_PYTHON_DISTUTILS_BUILD_OPTS options are already passed automatically by
the infrastructure.

• PYTHON_FOO_INSTALL_TARGET_OPTS, PYTHON_FOO_INSTALL_STAGING_OPTS, HOST_PYTHON_FOO_INSTA
LL_OPTS to specify additional options to pass to the Python setup.py script during the target installation step, the stag-
ing installation step or the host installation, respectively. Note that the infrastructure is automatically passing some options,
defined in PKG_PYTHON_DISTUTILS_INSTALL_TARGET_OPTS or PKG_PYTHON_DISTUTILS_INSTALL_STAGI
NG_OPTS (for target distutils packages), HOST_PKG_PYTHON_DISTUTILS_INSTALL_OPTS (for host distutils pack-
ages), PKG_PYTHON_SETUPTOOLS_INSTALL_TARGET_OPTS or PKG_PYTHON_SETUPTOOLS_INSTALL_STAGIN
G_OPTS (for target setuptools packages) and HOST_PKG_PYTHON_SETUPTOOLS_INSTALL_OPTS (for host setuptools
packages).

• HOST_PYTHON_FOO_NEEDS_HOST_PYTHON, to define the host python interpreter. The usage of this variable is limited
to host packages. The two supported value are python2 and python3. It will ensures the right host python package is
available and will invoke it for the build. If some build steps are overloaded, the right python interpreter must be explicitly
called in the commands.

With the Python infrastructure, all the steps required to build and install the packages are already defined, and they generally work
well for most Python-based packages. However, when required, it is still possible to customize what is done in any particular
step:

• By adding a post-operation hook (after extract, patch, configure, build or install). See Section 17.14 for details.

• By overriding one of the steps. For example, even if the Python infrastructure is used, if the package .mk file defines its own
PYTHON_FOO_BUILD_CMDS variable, it will be used instead of the default Python one. However, using this method should
be restricted to very specific cases. Do not use it in the general case.

17.9 Infrastructure for LuaRocks-based packages

17.9.1 luarocks-package tutorial

First, let’s see how to write a .mk file for a LuaRocks-based package, with an example :

01: ##
02: #
03: # luafoo
04: #
05: ##
06:
07: LUAFOO_VERSION = 1.0.2-1
08: LUAFOO_DEPENDENCIES = foo
09:
10: LUAFOO_BUILD_OPTS += FOO_INCDIR=$(STAGING_DIR)/usr/include
11: LUAFOO_BUILD_OPTS += FOO_LIBDIR=$(STAGING_DIR)/usr/lib
12: LUAFOO_LICENSE = luaFoo license
13: LUAFOO_LICENSE_FILES = COPYING
14:
15: $(eval $(luarocks-package))

The Buildroot user manual 64 / 116

On line 7, we declare the version of the package (the same as in the rockspec, which is the concatenation of the upstream version
and the rockspec revision, separated by a hyphen -).

On line 8, we declare our dependencies against native libraries, so that they are built before the build process of our package
starts.

On lines 10-11, we tell Buildroot to pass custom options to LuaRocks when it is building the package.

On lines 12-13, we specify the licensing terms for the package.

Finally, on line 15, we invoke the luarocks-package macro that generates all the Makefile rules that actually allows the
package to be built.

17.9.2 luarocks-package reference

LuaRocks is a deployment and management system for Lua modules, and supports various build.type: builtin, make and
cmake. In the context of Buildroot, the luarocks-package infrastructure only supports the builtin mode. LuaRocks
packages that use the make or cmake build mechanisms should instead be packaged using the generic-package and
cmake-package infrastructures in Buildroot, respectively.

The main macro of the LuaRocks package infrastructure is luarocks-package: like generic-package it works by
defining a number of variables providing metadata information about the package, and then calling luarocks-package. It is
worth mentioning that building LuaRocks packages for the host is not supported, so the macro host-luarocks-package is
not implemented.

Just like the generic infrastructure, the LuaRocks infrastructure works by defining a number of variables before calling the
luarocks-package macro.

First, all the package metadata information variables that exist in the generic infrastructure also exist in the LuaRocks infrastruc-
ture: LUAFOO_VERSION, LUAFOO_SOURCE, LUAFOO_SITE, LUAFOO_DEPENDENCIES, LUAFOO_LICENSE, LUAFOO
_LICENSE_FILES.

Two of them are populated by the LuaRocks infrastructure (for the download step). If your package is not hosted on the
LuaRocks mirror $(BR2_LUAROCKS_MIRROR), you can override them:

• LUAFOO_SITE, which defaults to $(BR2_LUAROCKS_MIRROR)

• LUAFOO_SOURCE, which defaults to luafoo-$(LUAFOO_VERSION).src.rock

A few additional variables, specific to the LuaRocks infrastructure, are also defined. They can be overridden in specific cases.

• LUAFOO_ROCKSPEC, which defaults to luafoo-$(LUAFOO_VERSION).rockspec

• LUAFOO_SUBDIR, which defaults to luafoo-$(LUAFOO_VERSION_WITHOUT_ROCKSPEC_REVISION)

• LUAFOO_BUILD_OPTS contains additional build options for the luarocks build call.

17.10 Infrastructure for Perl/CPAN packages

17.10.1 perl-package tutorial

First, let’s see how to write a .mk file for a Perl/CPAN package, with an example :

01: ##
02: #
03: # perl-foo-bar
04: #
05: ##
06:
07: PERL_FOO_BAR_VERSION = 0.02

The Buildroot user manual 65 / 116

08: PERL_FOO_BAR_SOURCE = Foo-Bar-$(PERL_FOO_BAR_VERSION).tar.gz
09: PERL_FOO_BAR_SITE = $(BR2_CPAN_MIRROR)/authors/id/M/MO/MONGER
10: PERL_FOO_BAR_DEPENDENCIES = perl-strictures
11: PERL_FOO_BAR_LICENSE = Artistic or GPLv1+
12: PERL_FOO_BAR_LICENSE_FILES = LICENSE
13:
14: $(eval $(perl-package))

On line 7, we declare the version of the package.

On line 8 and 9, we declare the name of the tarball and the location of the tarball on a CPAN server. Buildroot will automatically
download the tarball from this location.

On line 10, we declare our dependencies, so that they are built before the build process of our package starts.

On line 11 and 12, we give licensing details about the package (its license on line 11, and the file containing the license text on
line 12).

Finally, on line 14, we invoke the perl-package macro that generates all the Makefile rules that actually allow the package
to be built.

Most of these data can be retrieved from https://metacpan.org/. So, this file and the Config.in can be generated by running the
script supports/scripts/scancpan Foo-Bar in the Buildroot directory (or in the BR2_EXTERNAL directory). This
script creates a Config.in file and foo-bar.mk file for the requested package, and also recursively for all dependencies specified
by CPAN. You should still manually edit the result. In particular, the following things should be checked.

• If the perl module links with a shared library that is provided by another (non-perl) package, this dependency is not added
automatically. It has to be added manually to PERL_FOO_BAR_DEPENDENCIES.

• The package/Config.in file has to be updated manually to include the generated Config.in files. As a hint, the scanc
pan script prints out the required source "..." statements, sorted alphabetically.

17.10.2 perl-package reference

As a policy, packages that provide Perl/CPAN modules should all be named perl-<something> in Buildroot.

This infrastructure handles various Perl build systems : ExtUtils-MakeMaker, Module-Build and Module-Build-
Tiny. Build.PL is always preferred when a package provides a Makefile.PL and a Build.PL.

The main macro of the Perl/CPAN package infrastructure is perl-package. It is similar to the generic-package macro.
The ability to have target and host packages is also available, with the host-perl-package macro.

Just like the generic infrastructure, the Perl/CPAN infrastructure works by defining a number of variables before calling the
perl-package macro.

First, all the package metadata information variables that exist in the generic infrastructure also exist in the Perl/CPAN in-
frastructure: PERL_FOO_VERSION, PERL_FOO_SOURCE, PERL_FOO_PATCH, PERL_FOO_SITE, PERL_FOO_SUBDIR,
PERL_FOO_DEPENDENCIES, PERL_FOO_INSTALL_TARGET.

Note that setting PERL_FOO_INSTALL_STAGING to YES has no effect unless a PERL_FOO_INSTALL_STAGING_CMDS
variable is defined. The perl infrastructure doesn’t define these commands since Perl modules generally don’t need to be installed
to the staging directory.

A few additional variables, specific to the Perl/CPAN infrastructure, can also be defined. Many of them are only useful in very
specific cases, typical packages will therefore only use a few of them.

• PERL_FOO_CONF_ENV/HOST_PERL_FOO_CONF_ENV, to specify additional environment variables to pass to the perl
Makefile.PL or perl Build.PL. By default, empty.

• PERL_FOO_CONF_OPTS/HOST_PERL_FOO_CONF_OPTS, to specify additional configure options to pass to the perl
Makefile.PL or perl Build.PL. By default, empty.

https://metacpan.org/

The Buildroot user manual 66 / 116

• PERL_FOO_BUILD_OPTS/HOST_PERL_FOO_BUILD_OPTS, to specify additional options to pass to make pure_all
or perl Build build in the build step. By default, empty.

• PERL_FOO_INSTALL_TARGET_OPTS, to specify additional options to pass to make pure_install or perl Build
install in the install step. By default, empty.

• HOST_PERL_FOO_INSTALL_OPTS, to specify additional options to pass to make pure_install or perl Build
install in the install step. By default, empty.

17.11 Infrastructure for virtual packages

In Buildroot, a virtual package is a package whose functionalities are provided by one or more packages, referred to as providers.
The virtual package management is an extensible mechanism allowing the user to choose the provider used in the rootfs.

For example, OpenGL ES is an API for 2D and 3D graphics on embedded systems. The implementation of this API is different
for the Allwinner Tech Sunxi and the Texas Instruments OMAP35xx platforms. So libgles will be a virtual package and
sunxi-mali and ti-gfx will be the providers.

17.11.1 virtual-package tutorial

In the following example, we will explain how to add a new virtual package (something-virtual) and a provider for it (some-
provider).

First, let’s create the virtual package.

17.11.2 Virtual package’s Config.in file

The Config.in file of virtual package something-virtual should contain:

01: config BR2_PACKAGE_HAS_SOMETHING_VIRTUAL
02: bool
03:
04: config BR2_PACKAGE_PROVIDES_SOMETHING_VIRTUAL
05: depends on BR2_PACKAGE_HAS_SOMETHING_VIRTUAL
06: string

In this file, we declare two options, BR2_PACKAGE_HAS_SOMETHING_VIRTUAL and BR2_PACKAGE_PROVIDES_SOME
THING_VIRTUAL, whose values will be used by the providers.

17.11.3 Virtual package’s .mk file

The .mk for the virtual package should just evaluate the virtual-package macro:

01: ##
02: #
03: # something-virtual
04: #
05: ##
06:
07: $(eval $(virtual-package))

The ability to have target and host packages is also available, with the host-virtual-package macro.

The Buildroot user manual 67 / 116

17.11.4 Provider’s Config.in file

When adding a package as a provider, only the Config.in file requires some modifications.

The Config.in file of the package some-provider, which provides the functionalities of something-virtual, should contain:

01: config BR2_PACKAGE_SOME_PROVIDER
02: bool "some-provider"
03: select BR2_PACKAGE_HAS_SOMETHING_VIRTUAL
04: help
05: This is a comment that explains what some-provider is.
06:
07: http://foosoftware.org/some-provider/
08:
09: if BR2_PACKAGE_SOME_PROVIDER
10: config BR2_PACKAGE_PROVIDES_SOMETHING_VIRTUAL
11: default "some-provider"
12: endif

On line 3, we select BR2_PACKAGE_HAS_SOMETHING_VIRTUAL, and on line 11, we set the value of BR2_PACKAGE_PRO
VIDES_SOMETHING_VIRTUAL to the name of the provider, but only if it is selected.

See Chapter 25 for the symbols to select if you implement a new provider for an existing virtual package.

17.11.5 Provider’s .mk file

The .mk file should also declare an additional variable SOME_PROVIDER_PROVIDES to contain the names of all the virtual
packages it is an implementation of:

01: SOME_PROVIDER_PROVIDES = something-virtual

Of course, do not forget to add the proper build and runtime dependencies for this package!

See Chapter 25 for the names of virtual packages to provide if you implement a new provider for an existing virtual package.

17.11.6 Notes on depending on a virtual package

When adding a package that requires a certain FEATURE provided by a virtual package, you have to use depends on BR2_
PACKAGE_HAS_FEATURE, like so:

config BR2_PACKAGE_HAS_FEATURE
bool

config BR2_PACKAGE_FOO
bool "foo"
depends on BR2_PACKAGE_HAS_FEATURE

17.11.7 Notes on depending on a specific provider

If your package really requires a specific provider, then you’ll have to make your package depends on this provider; you can
not select a provider.

Let’s take an example with two providers for a FEATURE:

config BR2_PACKAGE_HAS_FEATURE
bool

config BR2_PACKAGE_FOO
bool "foo"

The Buildroot user manual 68 / 116

select BR2_PACKAGE_HAS_FEATURE

config BR2_PACKAGE_BAR
bool "bar"
select BR2_PACKAGE_HAS_FEATURE

And you are adding a package that needs FEATURE as provided by foo, but not as provided by bar.

If you were to use select BR2_PACKAGE_FOO, then the user would still be able to select BR2_PACKAGE_BAR in the
menuconfig. This would create a configuration inconsistency, whereby two providers of the same FEATURE would be enabled
at once, one explicitly set by the user, the other implicitly by your select.

Instead, you have to use depends on BR2_PACKAGE_FOO, which avoids any implicit configuration inconsistency.

17.12 Infrastructure for packages using kconfig for configuration files

A popular way for a software package to handle user-specified configuration is kconfig. Among others, it is used by the Linux
kernel, Busybox, and Buildroot itself. The presence of a .config file and a menuconfig target are two well-known symptoms
of kconfig being used.

Buildroot features an infrastructure for packages that use kconfig for their configuration. This infrastructure provides the neces-
sary logic to expose the package’s menuconfig target as foo-menuconfig in Buildroot, and to handle the copying back
and forth of the configuration file in a correct way.

The kconfig-package infrastructure is based on the generic-package infrastructure. All variables supported by gene
ric-package are available in kconfig-package as well. See Section 17.5.2 for more details.

In order to use the kconfig-package infrastructure for a Buildroot package, the minimally required lines in the .mk file, in
addition to the variables required by the generic-package infrastructure, are:

FOO_KCONFIG_FILE = reference-to-source-configuration-file

$(eval $(kconfig-package))

This snippet creates the following make targets:

• foo-menuconfig, which calls the package’s menuconfig target

• foo-update-config, which copies the configuration back to the source configuration file.

and ensures that the source configuration file is copied to the build directory at the right moment.

In addition to these minimally required lines, several optional variables can be set to suit the needs of the package under consid-
eration:

• FOO_KCONFIG_EDITORS: a space-separated list of kconfig editors to support, for example menuconfig xconfig. By default,
menuconfig.

• FOO_KCONFIG_OPTS: extra options to pass when calling the kconfig editors. This may need to include $(FOO_MAKE_OPTS),
for example. By default, empty.

• FOO_KCONFIG_FIXUP_CMDS: a list of shell commands needed to fixup the configuration file after copying it or running a
kconfig editor. Such commands may be needed to ensure a configuration consistent with other configuration of Buildroot, for
example. By default, empty.

The Buildroot user manual 69 / 116

17.13 Infrastructure for asciidoc documents

The Buildroot manual, which you are currently reading, is entirely written using the AsciiDoc mark-up syntax. The manual is
then rendered to many formats:

• html

• split-html

• pdf

• epub

• text

Although Buildroot only contains one document written in AsciiDoc, there is, as for packages, an infrastructure for rendering
documents using the AsciiDoc syntax.

Also as for packages, the AsciiDoc infrastructure is available from BR2_EXTERNAL Section 9.2. This allows documentation
for a BR2_EXTERNAL tree to match the Buildroot documentation, as it will be rendered to the same formats and use the same
layout and theme.

17.13.1 asciidoc-document tutorial

Whereas package infrastructures are suffixed with -package, the document infrastructures are suffixed with -document. So,
the AsciiDoc infrastructure is named asciidoc-document.

Here is an example to render a simple AsciiDoc document.

01: ##
02: #
03: # foo-document
04: #
05: ##
06:
07: FOO_SOURCES = $(sort $(wildcard $(pkgdir)/*))
08: $(eval $(call asciidoc-document))

On line 7, the Makefile declares what the sources of the document are. Currently, it is expected that the document’s sources are
only local; Buildroot will not attempt to download anything to render a document. Thus, you must indicate where the sources
are. Usually, the string above is sufficient for a document with no sub-directory structure.

On line 8, we call the asciidoc-document function, which generates all the Makefile code necessary to render the document.

17.13.2 asciidoc-document reference

The list of variables that can be set in a .mk file to give metadata information is (assuming the document name is foo) :

• FOO_SOURCES, mandatory, defines the source files for the document.

• FOO_RESOURCES, optional, may contain a space-separated list of paths to one or more directories containing so-called
resources (like CSS or images). By default, empty.

There are also additional hooks (see Section 17.14 for general information on hooks), that a document may set to define extra
actions to be done at various steps:

• FOO_POST_RSYNC_HOOKS to run additional commands after the sources have been copied by Buildroot. This can for
example be used to generate part of the manual with information extracted from the tree. As an example, Buildroot uses this
hook to generate the tables in the appendices.

http://asciidoc.org/

The Buildroot user manual 70 / 116

• FOO_CHECK_DEPENDENCIES_HOOKS to run additional tests on required components to generate the document. In Asci-
iDoc, it is possible to call filters, that is, programs that will parse an AsciiDoc block and render it appropriately (e.g. ditaa or
aafigure).

• FOO_CHECK_DEPENDENCIES_<FMT>_HOOKS, to run additional tests for the specified format <FMT> (see the list of ren-
dered formats, above).

Here is a complete example that uses all variables and all hooks:

01: ##
02: #
03: # foo-document
04: #
05: ##
06:
07: FOO_SOURCES = $(sort $(wildcard $(pkgdir)/*))
08: FOO_RESOURCES = $(sort $(wildcard $(pkgdir)/ressources))
09:
10: define FOO_GEN_EXTRA_DOC
11: /path/to/generate-script --outdir=$(@D)
12: endef
13: FOO_POST_RSYNC_HOOKS += FOO_GEN_EXTRA_DOC
14:
15: define FOO_CHECK_MY_PROG
16: if ! which my-prog >/dev/null 2>&1; then \
17: echo "You need my-prog to generate the foo document"; \
18: exit 1; \
19: fi
20: endef
21: FOO_CHECK_DEPENDENCIES_HOOKS += FOO_CHECK_MY_PROG
22:
23: define FOO_CHECK_MY_OTHER_PROG
24: if ! which my-other-prog >/dev/null 2>&1; then \
25: echo "You need my-other-prog to generate the foo document as PDF"; \
26: exit 1; \
27: fi
28: endef
29: FOO_CHECK_DEPENDENCIES_PDF_HOOKS += FOO_CHECK_MY_OTHER_PROG
30:
31: $(eval $(call asciidoc-document))

17.14 Hooks available in the various build steps

The generic infrastructure (and as a result also the derived autotools and cmake infrastructures) allow packages to specify hooks.
These define further actions to perform after existing steps. Most hooks aren’t really useful for generic packages, since the .mk
file already has full control over the actions performed in each step of the package construction.

The following hook points are available:

• LIBFOO_PRE_DOWNLOAD_HOOKS

• LIBFOO_POST_DOWNLOAD_HOOKS

• LIBFOO_PRE_EXTRACT_HOOKS

• LIBFOO_POST_EXTRACT_HOOKS

• LIBFOO_PRE_RSYNC_HOOKS

• LIBFOO_POST_RSYNC_HOOKS

http://ditaa.sourceforge.net/
https://pythonhosted.org/aafigure/

The Buildroot user manual 71 / 116

• LIBFOO_PRE_PATCH_HOOKS

• LIBFOO_POST_PATCH_HOOKS

• LIBFOO_PRE_CONFIGURE_HOOKS

• LIBFOO_POST_CONFIGURE_HOOKS

• LIBFOO_PRE_BUILD_HOOKS

• LIBFOO_POST_BUILD_HOOKS

• LIBFOO_PRE_INSTALL_HOOKS (for host packages only)

• LIBFOO_POST_INSTALL_HOOKS (for host packages only)

• LIBFOO_PRE_INSTALL_STAGING_HOOKS (for target packages only)

• LIBFOO_POST_INSTALL_STAGING_HOOKS (for target packages only)

• LIBFOO_PRE_INSTALL_TARGET_HOOKS (for target packages only)

• LIBFOO_POST_INSTALL_TARGET_HOOKS (for target packages only)

• LIBFOO_PRE_INSTALL_IMAGES_HOOKS

• LIBFOO_POST_INSTALL_IMAGES_HOOKS

• LIBFOO_PRE_LEGAL_INFO_HOOKS

• LIBFOO_POST_LEGAL_INFO_HOOKS

These variables are lists of variable names containing actions to be performed at this hook point. This allows several hooks to be
registered at a given hook point. Here is an example:

define LIBFOO_POST_PATCH_FIXUP
action1
action2

endef

LIBFOO_POST_PATCH_HOOKS += LIBFOO_POST_PATCH_FIXUP

17.14.1 Using the POST_RSYNC hook

The POST_RSYNC hook is run only for packages that use a local source, either through the local site method or the OVERRI
DE_SRCDIR mechanism. In this case, package sources are copied using rsync from the local location into the buildroot build
directory. The rsync command does not copy all files from the source directory, though. Files belonging to a version control
system, like the directories .git, .hg, etc. are not copied. For most packages this is sufficient, but a given package can perform
additional actions using the POST_RSYNC hook.

In principle, the hook can contain any command you want. One specific use case, though, is the intentional copying of the version
control directory using rsync. The rsync command you use in the hook can, among others, use the following variables:

• $(SRCDIR): the path to the overridden source directory

• $(@D): the path to the build directory

The Buildroot user manual 72 / 116

17.15 Gettext integration and interaction with packages

Many packages that support internationalization use the gettext library. Dependencies for this library are fairly complicated and
therefore, deserve some explanation.

The uClibc C library doesn’t implement gettext functionality; therefore with this C library, a separate gettext must be compiled,
which is provided by the additional libintl library, part of the gettext package.

On the other hand, the glibc C library does integrate its own gettext library functions, so it is not necessary to build a separate
libintl library.

However, certain packages need some gettext utilities on the target, such as the gettext program itself, which allows to retrieve
translated strings, from the command line.

Additionally, some packages (such as libglib2) do require gettext functions unconditionally, while other packages (in general,
those who support --disable-nls) only require gettext functions when locale support is enabled.

Therefore, Buildroot defines two configuration options:

• BR2_NEEDS_GETTEXT, which is true as soon as the toolchain doesn’t provide its own gettext implementation

• BR2_NEEDS_GETTEXT_IF_LOCALE, which is true if the toolchain doesn’t provide its own gettext implementation and if
locale support is enabled

Packages that need gettext only when locale support is enabled should:

• use select BR2_PACKAGE_GETTEXT if BR2_NEEDS_GETTEXT_IF_LOCALE in the Config.in file;

• use $(if $(BR2_NEEDS_GETTEXT_IF_LOCALE),gettext) in the package DEPENDENCIES variable in the .mk
file.

Packages that unconditionally need gettext (which should be very rare) should:

• use select BR2_PACKAGE_GETTEXT if BR2_NEEDS_GETTEXT in the Config.in file;

• use $(if $(BR2_NEEDS_GETTEXT),gettext) in the package DEPENDENCIES variable in the .mk file.

Packages that need the gettext utilities on the target (should be rare) should:

• use select BR2_PACKAGE_GETTEXT in their Config.in file, indicating in a comment above that it’s a runtime depen-
dency only.

• not add any gettext dependency in the DEPENDENCIES variable of their .mk file.

17.16 Tips and tricks

17.16.1 Package name, config entry name and makefile variable relationship

In Buildroot, there is some relationship between:

• the package name, which is the package directory name (and the name of the *.mk file);

• the config entry name that is declared in the Config.in file;

• the makefile variable prefix.

It is mandatory to maintain consistency between these elements, using the following rules:

The Buildroot user manual 73 / 116

• the package directory and the *.mk name are the package name itself (e.g.: package/foo-bar_boo/foo-bar_boo.
mk);

• the make target name is the package name itself (e.g.: foo-bar_boo);

• the config entry is the upper case package name with . and - characters substituted with _, prefixed with BR2_PACKAGE_
(e.g.: BR2_PACKAGE_FOO_BAR_BOO);

• the *.mk file variable prefix is the upper case package name with . and - characters substituted with _ (e.g.: FOO_BAR_BO
O_VERSION).

17.16.2 How to add a package from GitHub

Packages on GitHub often don’t have a download area with release tarballs. However, it is possible to download tarballs directly
from the repository on GitHub. As GitHub is known to have changed download mechanisms in the past, the github helper
function should be used as shown below.

FOO_VERSION = v1.0 # tag or full commit ID
FOO_SITE = $(call github,<user>,<package>,$(FOO_VERSION))

NOTES

• The FOO_VERSION can either be a tag or a commit ID.

• The tarball name generated by github matches the default one from Buildroot (e.g.: foo-f6fb6654af62045239caed59
50bc6c7971965e60.tar.gz), so it is not necessary to specify it in the .mk file.

• When using a commit ID as version, you should use the full 40 hex characters.

If the package you wish to add does have a release section on GitHub, the maintainer may have uploaded a release tarball, or
the release may just point to the automatically generated tarball from the git tag. If there is a release tarball uploaded by the
maintainer, we prefer to use that since it may be slightly different (e.g. it contains a configure script so we don’t need to do
AUTORECONF).

You can see on the release page if it’s an uploaded tarball or a git tag:

• If there is a green download button, like mongrel2, then it was uploaded by the maintainer and you should use the link of that
button to specify FOO_SITE, and not use the github helper.

• If there is grey download button, like xbmc, then it’s an automatically generated tarball and you should use the github helper
function.

17.17 Conclusion

As you can see, adding a software package to Buildroot is simply a matter of writing a Makefile using an existing example and
modifying it according to the compilation process required by the package.

If you package software that might be useful for other people, don’t forget to send a patch to the Buildroot mailing list (see
Section 21.5)!

https://github.com/zedshaw/mongrel2/releases/tag/v1.9.1
https://github.com/xbmc/xbmc/releases/tag/13.2-Gotham

The Buildroot user manual 74 / 116

Chapter 18

Patching a package

While integrating a new package or updating an existing one, it may be necessary to patch the source of the software to get it
cross-built within Buildroot.

Buildroot offers an infrastructure to automatically handle this during the builds. It supports three ways of applying patch sets:
downloaded patches, patches supplied within buildroot and patches located in a user-defined global patch directory.

18.1 Providing patches

18.1.1 Downloaded

If it is necessary to apply a patch that is available for download, then add it to the <packagename>_PATCH variable. It is
downloaded from the same site as the package itself. It can be a single patch, or a tarball containing a patch series.

This method is typically used for packages from Debian.

18.1.2 Within Buildroot

Most patches are provided within Buildroot, in the package directory; these typically aim to fix cross-compilation, libc support,
or other such issues.

These patch files should be named <packagename>-<number>-<description>.patch.

A series file, as used by quilt, may also be added in the package directory. In that case, the series file defines the patch
application order.

NOTES

• The patch files coming with Buildroot should not contain any package version reference in their filename.

• The field <number> in the patch file name refers to the apply order.

18.1.3 Global patch directory

The BR2_GLOBAL_PATCH_DIR configuration file option can be used to specify a space separated list of one or more directories
containing global package patches. See Section 9.8 for details.

The Buildroot user manual 75 / 116

18.2 How patches are applied

1. Run the <packagename>_PRE_PATCH_HOOKS commands if defined;

2. Cleanup the build directory, removing any existing *.rej files;

3. If <packagename>_PATCH is defined, then patches from these tarballs are applied;

4. If there are some *.patch files in the package’s Buildroot directory or in a package subdirectory named <packageve
rsion>, then:

• If a series file exists in the package directory, then patches are applied according to the series file;

• Otherwise, patch files matching <packagename>-*.patch are applied in alphabetical order. So, to ensure they are
applied in the right order, it is highly recommended to name the patch files like this: <packagename>-<number>-
<description>.patch, where <number> refers to the apply order.

5. If BR2_GLOBAL_PATCH_DIR is defined, the directories will be enumerated in the order they are specified. The patches
are applied as described in the previous step.

6. Run the <packagename>_POST_PATCH_HOOKS commands if defined.

If something goes wrong in the steps 3 or 4, then the build fails.

18.3 Format and licensing of the package patches

Patches are released under the same license as the software that is modified.

A message explaining what the patch does, and why it is needed, should be added in the header commentary of the patch.

You should add a Signed-off-by statement in the header of the each patch to help with keeping track of the changes and to
certify that the patch is released under the same license as the software that is modified.

If the software is under version control, it is recommended to use the upstream SCM software to generate the patch set.

Otherwise, concatenate the header with the output of the diff -purN package-version.orig/package-version/
command.

At the end, the patch should look like:

configure.ac: add C++ support test

Signed-off-by: John Doe <john.doe@noname.org>

--- configure.ac.orig
+++ configure.ac
@@ -40,2 +40,12 @@

AC_PROG_MAKE_SET
+
+AC_CACHE_CHECK([whether the C++ compiler works],
+ [rw_cv_prog_cxx_works],
+ [AC_LANG_PUSH([C++])
+ AC_LINK_IFELSE([AC_LANG_PROGRAM([], [])],
+ [rw_cv_prog_cxx_works=yes],
+ [rw_cv_prog_cxx_works=no])
+ AC_LANG_POP([C++])])
+
+AM_CONDITIONAL([CXX_WORKS], [test "x$rw_cv_prog_cxx_works" = "xyes"])

The Buildroot user manual 76 / 116

18.4 Integrating patches found on the Web

When integrating a patch of which you are not the author, you have to add a few things in the header of the patch itself.

Depending on whether the patch has been obtained from the project repository itself, or from somewhere on the web, add one of
the following tags:

Backported from: <some commit id>

or

Fetch from: <some url>

It is also sensible to add a few words about any changes to the patch that may have been necessary.

The Buildroot user manual 77 / 116

Chapter 19

Download infrastructure

TODO

The Buildroot user manual 78 / 116

Chapter 20

Debugging Buildroot

It is possible to instrument the steps Buildroot does when building packages. Define the variable BR2_INSTRUMENTATIO
N_SCRIPTS to contain the path of one or more scripts (or other executables), in a space-separated list, you want called before
and after each step. The scripts are called in sequence, with three parameters:

• start or end to denote the start (resp. the end) of a step;

• the name of the step about to be started, or which just ended.

• the name of the package

For example :

make BR2_INSTRUMENTATION_SCRIPTS="/path/to/my/script1 /path/to/my/script2"

That script has access to the following variables:

• BR2_CONFIG: the path to the Buildroot .config file

• HOST_DIR, STAGING_DIR, TARGET_DIR: see Section 17.5.2

• BUILD_DIR: the directory where packages are extracted and built

• BINARIES_DIR: the place where all binary files (aka images) are stored

• BASE_DIR: the base output directory

The Buildroot user manual 79 / 116

Chapter 21

Contributing to Buildroot

There are many ways in which you can contribute to Buildroot: analyzing and fixing bugs, analyzing and fixing package build
failures detected by the autobuilders, testing and reviewing patches sent by other developers, working on the items in our TODO
list and sending your own improvements to Buildroot or its manual. The following sections give a little more detail on each of
these items.

If you are interested in contributing to Buildroot, the first thing you should do is to subscribe to the Buildroot mailing list. This
list is the main way of interacting with other Buildroot developers and to send contributions to. If you aren’t subscribed yet, then
refer to Chapter 5 for the subscription link.

If you are going to touch the code, it is highly recommended to use a git repository of Buildroot, rather than starting from an
extracted source code tarball. Git is the easiest way to develop from and directly send your patches to the mailing list. Refer to
Chapter 3 for more information on obtaining a Buildroot git tree.

21.1 Reproducing, analyzing and fixing bugs

A first way of contributing is to have a look at the open bug reports in the Buildroot bug tracker. As we strive to keep the bug
count as small as possible, all help in reproducing, analyzing and fixing reported bugs is more than welcome. Don’t hesitate to
add a comment to bug reports reporting your findings, even if you don’t yet see the full picture.

21.2 Analyzing and fixing autobuild failures

The Buildroot autobuilders are a set of build machines that continuously run Buildroot builds based on random configurations.
This is done for all architectures supported by Buildroot, with various toolchains, and with a random selection of packages. With
the large commit activity on Buildroot, these autobuilders are a great help in detecting problems very early after commit.

All build results are available at http://autobuild.buildroot.org, statistics are at http://autobuild.buildroot.org/stats.php. Every day,
an overview of all failed packages is sent to the mailing list.

Detecting problems is great, but obviously these problems have to be fixed as well. Your contribution is very welcome here!
There are basically two things that can be done:

• Analyzing the problems. The daily summary mails do not contain details about the actual failures: in order to see what’s going
on you have to open the build log and check the last output. Having someone doing this for all packages in the mail is very
useful for other developers, as they can make a quick initial analysis based on this output alone.

• Fixing a problem. When fixing autobuild failures, you should follow these steps:

1. Check if you can reproduce the problem by building with the same configuration. You can do this manually, or use the
br-reproduce-build script that will automatically clone a Buildroot git repository, checkout the correct revision, download
and set the right configuration, and start the build.

https://bugs.busybox.net/buglist.cgi?product=buildroot
http://autobuild.buildroot.org
http://autobuild.buildroot.org/stats.php
http://git.buildroot.org/buildroot-test/tree/utils/br-reproduce-build

The Buildroot user manual 80 / 116

2. Analyze the problem and create a fix.

3. Verify that the problem is really fixed by starting from a clean Buildroot tree and only applying your fix.

4. Send the fix to the Buildroot mailing list (see Section 21.5). In case you created a patch against the package sources, you
should also send the patch upstream so that the problem will be fixed in a later release, and the patch in Buildroot can be
removed. In the commit message of a patch fixing an autobuild failure, add a reference to the build result directory, as
follows:

Fixes http://autobuild.buildroot.org/results/51000a9d4656afe9e0ea6f07b9f8ed374c2e4069

21.3 Reviewing and testing patches

With the amount of patches sent to the mailing list each day, the maintainer has a very hard job to judge which patches are ready
to apply and which ones aren’t. Contributors can greatly help here by reviewing and testing these patches.

In the review process, do not hesitate to respond to patch submissions for remarks, suggestions or anything that will help everyone
to understand the patches and make them better. Please use internet style replies in plain text emails when responding to patch
submissions.

To indicate approval of a patch, there are three formal tags that keep track of this approval. To add your tag to a patch, reply to
it with the approval tag below the original author’s Signed-off-by line. These tags will be picked up automatically by patchwork
(see Section 21.3.1) and will be part of the commit log when the patch is accepted.

Tested-by
Indicates that the patch has been tested successfully. You are encouraged to specify what kind of testing you performed
(compile-test on architecture X and Y, runtime test on target A, . . .). This additional information helps other testers and
the maintainer.

Reviewed-by
Indicates that you code-reviewed the patch and did your best in spotting problems, but you are not sufficiently familiar with
the area touched to provide an Acked-by tag. This means that there may be remaining problems in the patch that would be
spotted by someone with more experience in that area. Should such problems be detected, your Reviewed-by tag remains
appropriate and you cannot be blamed.

Acked-by
Indicates that you code-reviewed the patch and you are familiar enough with the area touched to feel that the patch can be
committed as-is (no additional changes required). In case it later turns out that something is wrong with the patch, your
Acked-by could be considered inappropriate. The difference between Acked-by and Reviewed-by is thus mainly that you
are prepared to take the blame on Acked patches, but not on Reviewed ones.

If you reviewed a patch and have comments on it, you should simply reply to the patch stating these comments, without providing
a Reviewed-by or Acked-by tag. These tags should only be provided if you judge the patch to be good as it is.

It is important to note that neither Reviewed-by nor Acked-by imply that testing has been performed. To indicate that you both
reviewed and tested the patch, provide two separate tags (Reviewed/Acked-by and Tested-by).

Note also that any developer can provide Tested/Reviewed/Acked-by tags, without exception, and we encourage everyone to do
this. Buildroot does not have a defined group of core developers, it just so happens that some developers are more active than
others. The maintainer will value tags according to the track record of their submitter. Tags provided by a regular contributor
will naturally be trusted more than tags provided by a newcomer. As you provide tags more regularly, your trustworthiness (in
the eyes of the maintainer) will go up, but any tag provided is valuable.

Buildroot’s Patchwork website can be used to pull in patches for testing purposes. Please see Section 21.3.1 for more information
on using Buildroot’s Patchwork website to apply patches.

The Buildroot user manual 81 / 116

21.3.1 Applying Patches from Patchwork

The main use of Buildroot’s Patchwork website for a developer is for pulling in patches into their local git repository for testing
purposes.

When browsing patches in the patchwork management interface, an mbox link is provided at the top of the page. Copy this link
address and run the following commands:

$ git checkout -b <test-branch-name>
$ wget -O - <mbox-url> | git am

Another option for applying patches is to create a bundle. A bundle is a set of patches that you can group together using the
patchwork interface. Once the bundle is created and the bundle is made public, you can copy the mbox link for the bundle and
apply the bundle using the above commands.

21.4 Work on items from the TODO list

If you want to contribute to Buildroot but don’t know where to start, and you don’t like any of the above topics, you can always
work on items from the Buildroot TODO list. Don’t hesitate to discuss an item first on the mailing list or on IRC. Do edit the
wiki to indicate when you start working on an item, so we avoid duplicate efforts.

21.5 Submitting patches

Note
Please, do not attach patches to bugs, send them to the mailing list instead.

If you made some changes to Buildroot and you would like to contribute them to the Buildroot project, proceed as follows.
Starting from the changes committed in your local git view, rebase your development branch on top of the upstream tree before
generating a patch set. To do so, run:

$ git fetch --all --tags
$ git rebase origin/master

Now, you are ready to generate then submit your patch set.

To generate it, run:

$ git format-patch -M -n -s -o outgoing origin/master

This will generate patch files in the outgoing subdirectory, automatically adding the Signed-off-by line.

Once patch files are generated, you can review/edit the commit message before submitting them, using your favorite text editor.

Lastly, send/submit your patch set to the Buildroot mailing list:

$ git send-email --to buildroot@buildroot.org outgoing/*

Note that git should be configured to use your mail account. To configure git, see man git-send-email or google it.

If you do not use git send-email, make sure posted patches are not line-wrapped, otherwise they cannot easily be applied.
In such a case, fix your e-mail client, or better yet, learn to use git send-email.

http://elinux.org/Buildroot#Todo_list

The Buildroot user manual 82 / 116

21.5.1 Cover letter

If you want to present the whole patch set in a separate mail, add --cover-letter to the git format-patch command
(see man git-format-patch for further information). This will generate a template for an introduction e-mail to your patch
series.

A cover letter may be useful to introduce the changes you propose in the following cases:

• large number of commits in the series;

• deep impact of the changes in the rest of the project;

• RFC 1;

• whenever you feel it will help presenting your work, your choices, the review process, etc.

21.5.2 Patch revision changelog

When improvements are requested, the new revision of each commit should include a changelog of the modifications between
each submission. Note that when your patch series is introduced by a cover letter, an overall changelog may be added to the cover
letter in addition to the changelog in the individual commits. The best thing to rework a patch series is by interactive rebasing:
git rebase -i origin/master. Consult the git manual for more information.

When added to the individual commits, this changelog is added when editing the commit message. Below the Signed-off-
by section, add --- and your changelog.

Although the changelog will be visible for the reviewers in the mail thread, as well as in patchwork, git will automatically
ignores lines below --- when the patch will be merged. This is the intended behavior: the changelog is not meant to be
preserved forever in the git history of the project.

Hereafter the recommended layout:

Patch title: short explanation, max 72 chars

A paragraph that explains the problem, and how it manifests itself. If
the problem is complex, it is OK to add more paragraphs. All paragraphs
should be wrapped at 72 characters.

A paragraph that explains the root cause of the problem. Again, more
than on paragraph is OK.

Finally, one or more paragraphs that explain how the problem is solved.
Don’t hesitate to explain complex solutions in detail.

Signed-off-by: John DOE <john.doe@example.net>

Changes v2 -> v3:

- foo bar (suggested by Jane)
- bar buz

Changes v1 -> v2:
- alpha bravo (suggested by John)
- charly delta

Any patch revision should include the version number. The version number is simply composed of the letter v followed by an
integer greater or equal to two (i.e. "PATCH v2", "PATCH v3" . . .).

This can be easily handled with git format-patch by using the option --subject-prefix:

$ git format-patch --subject-prefix "PATCH v4" \
-M -s -o outgoing origin/master

1 RFC: (Request for comments) change proposal

http://patchwork.buildroot.org

The Buildroot user manual 83 / 116

21.6 Reporting issues/bugs or getting help

Before reporting any issue, please check in the mailing list archive Chapter 5 whether someone has already reported and/or fixed
a similar problem.

However you choose to report bugs or get help, either by opening a bug in the bug tracker Chapter 5 or by sending a mail to the
mailing list Chapter 5, there are a number of details to provide in order to help people reproduce and find a solution to the issue.

Try to think as if you were trying to help someone else; in that case, what would you need?

Here is a short list of details to provide in such case:

• host machine (OS/release)

• version of Buildroot

• target for which the build fails

• package(s) for which the build fails

• the command that fails and its output

• any information you think that may be relevant

Additionally, you should add the .config file (or if you know how, a defconfig; see Section 9.3).

If some of these details are too large, do not hesitate to use a pastebin service. Note that not all available pastebin services will
preserve Unix-style line terminators when downloading raw pastes. Following pastebin services are known to work correctly: -
https://gist.github.com/ - http://code.bulix.org/

https://gist.github.com/
http://code.bulix.org/

The Buildroot user manual 84 / 116

Part IV

Appendix

The Buildroot user manual 85 / 116

Chapter 22

Makedev syntax documentation

The makedev syntax is used in several places in Buildroot to define changes to be made for permissions, or which device files to
create and how to create them, in order to avoid calls to mknod.

This syntax is derived from the makedev utility, and more complete documentation can be found in the package/makedevs/
README file.

It takes the form of a space separated list of fields, one file per line; the fields are:

name type mode uid gid major minor start inc count

There are a few non-trivial blocks:

• name is the path to the file you want to create/modify

• type is the type of the file, being one of:

– f: a regular file

– d: a directory

– c: a character device file

– b: a block device file

– p: a named pipe

• mode, uid and gid are the usual permissions settings

• major and minor are here for device files - set to - for other files

• start, inc and count are for when you want to create a batch of files, and can be reduced to a loop, beginning at start,
incrementing its counter by inc until it reaches count

Let’s say you want to change the permissions of a given file; using this syntax, you will need to put:

/usr/bin/foobar f 644 0 0 - - - - -

On the other hand, if you want to create the device file /dev/hda and the corresponding 15 files for the partitions, you will
need for /dev/hda:

/dev/hda b 640 0 0 3 0 0 0 -

and then for device files corresponding to the partitions of /dev/hda, /dev/hdaX, X ranging from 1 to 15:

/dev/hda b 640 0 0 3 1 1 1 15

The Buildroot user manual 86 / 116

Chapter 23

Makeusers syntax documentation

The syntax to create users is inspired by the makedev syntax, above, but is specific to Buildroot.

The syntax for adding a user is a space-separated list of fields, one user per line; the fields are:

username uid group gid password home shell groups comment

Where:

• username is the desired user name (aka login name) for the user. It can not be root, and must be unique. If set to -, then
just a group will be created.

• uid is the desired UID for the user. It must be unique, and not 0. If set to -1, then a unique UID will be computed by
Buildroot in the range [1000. . . 1999]

• group is the desired name for the user’s main group. It can not be root. If the group does not exist, it will be created.

• gid is the desired GID for the user’s main group. It must be unique, and not 0. If set to -1, and the group does not already
exist, then a unique GID will be computed by Buildroot in the range [1000..1999]

• password is the crypt(3)-encoded password. If prefixed with !, then login is disabled. If prefixed with =, then it is interpreted
as clear-text, and will be crypt-encoded (using MD5). If prefixed with !=, then the password will be crypt-encoded (using
MD5) and login will be disabled. If set to *, then login is not allowed.

• home is the desired home directory for the user. If set to -, no home directory will be created, and the user’s home will be /.
Explicitly setting home to / is not allowed.

• shell is the desired shell for the user. If set to -, then /bin/false is set as the user’s shell.

• groups is the comma-separated list of additional groups the user should be part of. If set to -, then the user will be a member
of no additional group. Missing groups will be created with an arbitrary gid.

• comment (aka GECOS field) is an almost-free-form text.

There are a few restrictions on the content of each field:

• except for comment, all fields are mandatory.

• except for comment, fields may not contain spaces.

• no field may contain a colon (:).

If home is not -, then the home directory, and all files below, will belong to the user and its main group.

Examples:

https://en.wikipedia.org/wiki/Gecos_field

The Buildroot user manual 87 / 116

foo -1 bar -1 !=blabla /home/foo /bin/sh alpha,bravo Foo user

This will create this user:

• username (aka login name) is: foo

• uid is computed by Buildroot

• main group is: bar

• main group gid is computed by Buildroot

• clear-text password is: blabla, will be crypt(3)-encoded, and login is disabled.

• home is: /home/foo

• shell is: /bin/sh

• foo is also a member of groups: alpha and bravo

• comment is: Foo user

test 8000 wheel -1 = - /bin/sh - Test user

This will create this user:

• username (aka login name) is: test

• uid is : 8000

• main group is: wheel

• main group gid is computed by Buildroot, and will use the value defined in the rootfs skeleton

• password is empty (aka no password).

• home is / but will not belong to test

• shell is: /bin/sh

• test is not a member of any additional groups

• comment is: Test user

The Buildroot user manual 88 / 116

Chapter 24

List of target packages available in Buildroot

Packages Target packages→ . . .
a10disp → Hardware handling

acl → System tools
acpid → Hardware handling

adwaita icon theme → Libraries→ Graphics
aespipe →Miscellaneous
agent++ → Libraries→ Networking

aiccu → Networking applications
aircrack-ng → Networking applications

alsa-lib → Libraries→ Audio/Sound
alsa-utils → Audio and video applications

alsamixergui → Graphic libraries and applications (graphic/text)
am335x-pru-package → Hardware handling

am33x-cm3 → Hardware handling→ Firmware
apitrace → Graphic libraries and applications (graphic/text)

applewmproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
appres → Graphic libraries and applications (graphic/text)→ X11R7 Applications

apr → Libraries→ Other
apr-util → Libraries→ Other

argp-standalone → Libraries→ Other
argus → Networking applications

armadillo → Libraries→ Other
arptables → Networking applications

at → Shell and utilities
atftp → Networking applications
atk → Libraries→ Graphics
attr → System tools

audiofile → Libraries→ Audio/Sound
aumix → Audio and video applications

autossh → Networking applications
avahi → Networking applications

avrdude → Hardware handling
axel → Networking applications

b43-firmware → Hardware handling→ Firmware
bandwidthd → Networking applications

bash → Shell and utilities
bc →Miscellaneous

bcache tools → Hardware handling
bcusdk → Networking applications

bdftopcf → Graphic libraries and applications (graphic/text)→ X11R7 Applications

The Buildroot user manual 89 / 116

Packages Target packages→ . . .
beecrypt → Libraries→ Crypto

beforelight → Graphic libraries and applications (graphic/text)→ X11R7 Applications
bellagio → Audio and video applications

berkeleydb → Libraries→ Database
bigreqsproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols

bind → Networking applications
binutils → Development tools

biosdevname → Hardware handling
bison (deprecated) → Development tools

bitmap → Graphic libraries and applications (graphic/text)→ X11R7 Applications
blackbox (deprecated) → Graphic libraries and applications (graphic/text)

bluez-utils → Networking applications
bluez-utils 5.x → Networking applications

bmon → Networking applications
boa → Networking applications

bonnie++ → Debugging, profiling and benchmark
boost → Libraries→ Other

bootutils → System tools
botan → Libraries→ Crypto

bridge-utils → Networking applications
bsdiff → Development tools

btrfs-progs → Filesystem and flash utilities
bustle → Development tools

BusyBox
bwm-ng → Networking applications

bzip2 → Compressors and decompressors
c-ares → Libraries→ Networking

CA Certificates → Libraries→ Crypto
cache-calibrator → Debugging, profiling and benchmark

cairo → Libraries→ Graphics
can-utils → Networking applications

canfestival → Libraries→ Networking
cblas/clapack → Libraries→ Other

ccid → Libraries→ Hardware handling
ccrypt → Shell and utilities
cdrkit → Hardware handling

cegui06 → Graphic libraries and applications (graphic/text)
celt051 → Libraries→ Audio/Sound
cgilua → Interpreter languages and scripting→ Lua libraries/modules
chrony → Networking applications

cifs-utils → Filesystem and flash utilities
civetweb → Networking applications
cJSON → Libraries→ JSON/XML
clamav →Miscellaneous

classpath → Libraries→ Other
collectd →Miscellaneous

compositeproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
connman → Networking applications

conntrack-tools → Networking applications
copas → Interpreter languages and scripting→ Lua libraries/modules

coreutils → System tools
cosmo → Interpreter languages and scripting→ Lua libraries/modules

coxpcall → Interpreter languages and scripting→ Lua libraries/modules
cppcms → Libraries→ Other
cppdb → Libraries→ Database

cppunit → Development tools

The Buildroot user manual 90 / 116

Packages Target packages→ . . .
cppzmq → Libraries→ Networking
cpuload → System tools
cramfs → Filesystem and flash utilities
crda → Networking applications

cryptodev-linux → Libraries→ Crypto→ cryptodev variant
cryptsetup → Hardware handling

ctorrent → Networking applications
cups → Networking applications

curlftpfs (FUSE) → Filesystem and flash utilities
cvs → Development tools

cwiid → Hardware handling
czmq → Libraries→ Networking
dado → Interpreter languages and scripting→ Lua libraries/modules

damageproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
dash → Shell and utilities
dbus → Hardware handling

dbus-c++ → Hardware handling
dbus-glib → Hardware handling

dbus-python → Hardware handling
dbus-triggerd → Hardware handling

dcron → System tools
Declarative module → Graphic libraries and applications (graphic/text)

DejaVu fonts → Graphic libraries and applications (graphic/text)
devmem2 → Hardware handling
dhcp (ISC) → Networking applications

dhcpcd → Networking applications
dhcpdump → Networking applications
dhrystone → Debugging, profiling and benchmark

dialog → Shell and utilities
diffutils → Development tools

dillo → Graphic libraries and applications (graphic/text)
directfb → Graphic libraries and applications (graphic/text)

directfb examples → Graphic libraries and applications (graphic/text)
directfb virtual input

extension
→ Graphic libraries and applications (graphic/text)

distcc (deprecated) → Development tools
dmalloc → Debugging, profiling and benchmark

dmidecode → Hardware handling
dmraid → Hardware handling

dmxproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
dnsmasq → Networking applications
docker → Graphic libraries and applications (graphic/text)

dosfstools → Filesystem and flash utilities
dovecot →Mail

dovecot-pigeonhole →Mail
dri2proto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
dri3proto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
dropbear → Networking applications

dropwatch → Debugging, profiling and benchmark
dsp-tools → System tools

dstat → Debugging, profiling and benchmark
dtach → Shell and utilities

dtc (libfdt) → Libraries→ Hardware handling
dtv-scan-tables → Hardware handling

duma → Debugging, profiling and benchmark
dvb-apps → Hardware handling

The Buildroot user manual 91 / 116

Packages Target packages→ . . .
dvbsnoop → Hardware handling
e2fsprogs → Filesystem and flash utilities
e2tools → Filesystem and flash utilities
ebtables → Networking applications

ecryptfs-utils → Filesystem and flash utilities
ed → Text editors and viewers

editres → Graphic libraries and applications (graphic/text)→ X11R7 Applications
eeprog → Hardware handling
eigen → Libraries→ Other

elfutils → Libraries→ Other
empty →Miscellaneous

enchant → Libraries→ Text and terminal handling
encodings → Graphic libraries and applications (graphic/text)→ X11R7 Fonts

enlightenment → Graphic libraries and applications (graphic/text)
Enlightenment

Foundation Libraries
→ Graphic libraries and applications (graphic/text)

enscript → Interpreter languages and scripting
erlang → Interpreter languages and scripting
espeak → Audio and video applications
ethtool → Networking applications
eudev → Hardware handling
evemu → Hardware handling
evtest → Hardware handling

exFAT (FUSE) → Filesystem and flash utilities
exfat-utils → Filesystem and flash utilities

exim →Mail
expat → Libraries→ JSON/XML
expect → Interpreter languages and scripting→ tcl libraries/modules

expedite → Graphic libraries and applications (graphic/text)
explorercanvas → Libraries→ Javascript

ezxml → Libraries→ JSON/XML
f2fs-tools → Filesystem and flash utilities

faad2 → Audio and video applications
faifa → Networking applications

fan-ctrl → Hardware handling
fb-test-app → Graphic libraries and applications (graphic/text)

fbdump (Framebuffer
Capture Tool)

→ Graphic libraries and applications (graphic/text)

fbgrab → Graphic libraries and applications (graphic/text)
fbset → Graphic libraries and applications (graphic/text)

fbterm → Graphic libraries and applications (graphic/text)
fbv → Graphic libraries and applications (graphic/text)

fconfig → Hardware handling
fdk-aac → Libraries→ Audio/Sound

feh → Graphic libraries and applications (graphic/text)
fetchmail →Mail
ffmpeg → Audio and video applications

fftw → Libraries→ Other
file → Shell and utilities

filemq → Libraries→ Networking
findutils → Development tools

fio → Debugging, profiling and benchmark
firmware-imx → Hardware handling

fis → Hardware handling
fixesproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols

flac → Audio and video applications

The Buildroot user manual 92 / 116

Packages Target packages→ . . .
flann → Libraries→ Other

flashbench → Filesystem and flash utilities
flashrom → Hardware handling

flex → Development tools
flickcurl → Libraries→ Networking

flite → Audio and video applications
flot → Libraries→ Javascript
fltk → Libraries→ Graphics

fluxbox → Graphic libraries and applications (graphic/text)
fmc → Networking applications

fmlib → Libraries→ Networking
fmtools → Hardware handling

font-adobe-100dpi → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-adobe-75dpi → Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-adobe-utopia-
100dpi

→ Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-adobe-utopia-
75dpi

→ Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-adobe-utopia-
type1

→ Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-alias → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-arabic-misc → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-bh-100dpi → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-bh-75dpi → Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-bh-
lucidatypewriter-

100dpi

→ Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-bh-
lucidatypewriter-75dpi

→ Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-bh-ttf → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-bh-type1 → Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-bitstream-100dpi → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-bitstream-75dpi → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-bitstream-type1 → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-cronyx-cyrillic → Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-cursor-misc → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-daewoo-misc → Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-dec-misc → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-ibm-type1 → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-isas-misc → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-jis-misc → Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-micro-misc → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-misc-cyrillic → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-misc-ethiopic → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-misc-meltho → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-misc-misc → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-mutt-misc → Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-schumacher-misc → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-screen-cyrillic → Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-sony-misc → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-sun-misc → Graphic libraries and applications (graphic/text)→ X11R7 Fonts

font-util → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-winitzki-cyrillic → Graphic libraries and applications (graphic/text)→ X11R7 Fonts
font-xfree86-type1 → Graphic libraries and applications (graphic/text)→ X11R7 Fonts

fontcacheproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
fontconfig → Libraries→ Graphics

The Buildroot user manual 93 / 116

Packages Target packages→ . . .
fontsproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
fonttosfnt → Graphic libraries and applications (graphic/text)→ X11R7 Applications

foomatic_filters → Networking applications
fping → Networking applications

freerdp → Graphic libraries and applications (graphic/text)
Freescale i.MX

libraries
→ Hardware handling

freetype → Libraries→ Graphics
fslsfonts → Graphic libraries and applications (graphic/text)→ X11R7 Applications
fstobdf → Graphic libraries and applications (graphic/text)→ X11R7 Applications

fswebcam → Graphic libraries and applications (graphic/text)
ftop → System tools

fxload → Hardware handling
gadgetfs-test → Hardware handling

gamin → Libraries→ Filesystem
gawk → Development tools

gd → Libraries→ Graphics
gdb → Debugging, profiling and benchmark

gdbm → Libraries→ Database
gdk-pixbuf → Libraries→ Graphics
genext2fs → Filesystem and flash utilities
genpart → Filesystem and flash utilities

genromfs → Filesystem and flash utilities
geoip → Libraries→ Networking

gesftpserver → Networking applications
getent → System tools
gettext → Development tools
giblib → Libraries→ Graphics

git → Development tools
glib-networking → Libraries→ Networking

glibmm → Libraries→ Other
glm → Libraries→ Other

glproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
gmp → Libraries→ Other
gmpc → Graphic libraries and applications (graphic/text)

gnu-efi → Libraries→ Hardware handling
gnuchess → Games

gnupg → Shell and utilities
gnupg2 → Shell and utilities
gnuplot → Graphic libraries and applications (graphic/text)
gnutls → Libraries→ Crypto

gob2 (deprecated) → Graphic libraries and applications (graphic/text)
Google font directory →Miscellaneous

google-breakpad → Debugging, profiling and benchmark
gperf → Development tools
gpm → Hardware handling
gpsd → Hardware handling

gptfdisk → Hardware handling
gpu-viv-bin-mx6q → Hardware handling

gqview → Graphic libraries and applications (graphic/text)
grantlee → Graphic libraries and applications (graphic/text)

grep → Development tools
gsl → Libraries→ Other

gst-dsp → Audio and video applications
gst-ffmpeg → Audio and video applications

gst-fsl-plugins → Audio and video applications

The Buildroot user manual 94 / 116

Packages Target packages→ . . .
gst-omapfb → Audio and video applications

gst-omx → Audio and video applications
gst-plugin-x170 → Audio and video applications
gst-plugins-bad → Audio and video applications
gst-plugins-base → Audio and video applications
gst-plugins-good → Audio and video applications
gst-plugins-ugly → Audio and video applications

gst1-libav → Audio and video applications
gst1-plugins-bad → Audio and video applications
gst1-plugins-base → Audio and video applications
gst1-plugins-good → Audio and video applications
gst1-plugins-ugly → Audio and video applications

gst1-validate → Audio and video applications
gstreamer 0.10 → Audio and video applications
gstreamer 1.x → Audio and video applications

gtest → Libraries→ Other
gtk engines → Libraries→ Graphics

gtkperf (performance
test for GTK2)

→ Graphic libraries and applications (graphic/text)

gutenprint → Networking applications
gvfs → Hardware handling
gzip → Compressors and decompressors

harfbuzz → Libraries→ Graphics
haserl → Interpreter languages and scripting

haveged →Miscellaneous
hdparm → Hardware handling

heirloom-mailx →Mail
hiawatha → Networking applications

hicolor (default theme) → Libraries→ Graphics→ GTK Themes
hicolor icon theme → Libraries→ Graphics

hostapd → Networking applications
hplip → Networking applications
htop → System tools

httping → Networking applications
hwdata → Hardware handling

i2c-tools → Hardware handling
iceauth → Graphic libraries and applications (graphic/text)→ X11R7 Applications

ico → Graphic libraries and applications (graphic/text)→ X11R7 Applications
icu → Libraries→ Text and terminal handling

ifplugd → Networking applications
iftop → Networking applications

igh-ethercat → Networking applications
igmpproxy → Networking applications

imagemagick → Graphic libraries and applications (graphic/text)
imlib2 → Libraries→ Graphics
imx-lib → Hardware handling
imx-vpu → Hardware handling
inadyn → Networking applications
infozip → Compressors and decompressors

inotify-tools → Shell and utilities
input-event-daemon → Hardware handling

input-tools → Hardware handling
inputproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols

intel-microcode → Hardware handling
intltool → Development tools
iostat → Hardware handling

The Buildroot user manual 95 / 116

Packages Target packages→ . . .
iozone → Debugging, profiling and benchmark
iperf → Networking applications
ipkg → Package managers

ipmitool → Hardware handling
iproute2 → Networking applications
iprutils → System tools

ipsec-tools → Networking applications
ipset → Networking applications

iptables → Networking applications
iptraf-ng → Networking applications
iputils → Networking applications

irda-utils → Hardware handling
iucode-tool → Hardware handling

iw → Networking applications
jack2 → Audio and video applications

jamvm → Interpreter languages and scripting
jansson → Libraries→ JSON/XML
jasper → Libraries→ Graphics
jhead → Graphic libraries and applications (graphic/text)
jimtcl → Interpreter languages and scripting

joe → Text editors and viewers
jpeg → Libraries→ Graphics→ jpeg variant

jpeg-turbo → Libraries→ Graphics→ jpeg variant
jq → Development tools

jQuery → Libraries→ Javascript
jQuery keyboard → Libraries→ Javascript

jQuery UI → Libraries→ Javascript
jQuery UI themes → Libraries→ Javascript

jquery-mobile → Libraries→ Javascript
jQuery-Sparkline → Libraries→ Javascript
jQuery-Validation → Libraries→ Javascript

jsmin → Libraries→ Javascript
json-c → Libraries→ JSON/XML

json-glib → Libraries→ JSON/XML
json-javascript → Libraries→ Javascript

kbd → Hardware handling
kbproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
kexec → Debugging, profiling and benchmark

kexec-lite → Debugging, profiling and benchmark
keyutils → System tools
kismet → Networking applications
kmod → System tools
knock → Networking applications

kobs-ng → Filesystem and flash utilities
ktap → Debugging, profiling and benchmark
lame → Audio and video applications

latencytop → Debugging, profiling and benchmark
lbase64 → Interpreter languages and scripting→ Lua libraries/modules

LBreakout2 → Games
lcdapi → Libraries→ Hardware handling

lcdproc → Hardware handling
lcms2 → Libraries→ Graphics

leafnode2 → Networking applications
leafpad → Graphic libraries and applications (graphic/text)

less → Text editors and viewers
lesstif → Libraries→ Graphics

The Buildroot user manual 96 / 116

Packages Target packages→ . . .
lftp → Networking applications

libaio → Libraries→ Hardware handling
libao → Libraries→ Audio/Sound

libarchive → Libraries→ Compression and decompression
libargtable2 → Libraries→ Other

libart → Libraries→ Graphics
libass → Libraries→Multimedia

libassuan → Libraries→ Crypto
libatasmart → Libraries→ Hardware handling

libatomic_ops → Libraries→ Other
libbluray → Libraries→Multimedia

libbsd → Libraries→ Other
libcap → Libraries→ Other

libcap-ng → Libraries→ Other
libcdaudio → Libraries→ Audio/Sound

libcdio → Libraries→ Audio/Sound
libcec → Libraries→ Hardware handling
libcgi → Libraries→ Networking

libcgicc → Libraries→ Networking
libcgroup → Libraries→ Other

libcofi → Libraries→ Other
libconfig → Libraries→ Filesystem

libconfuse → Libraries→ Filesystem
libcue → Libraries→ Audio/Sound

libcuefile → Libraries→ Audio/Sound
libcurl → Libraries→ Networking

libdaemon → Libraries→ Other
libdmtx → Libraries→ Graphics
libdmx → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libdnet → Libraries→ Networking
libdrm → Libraries→ Graphics

libdvbcsa → Libraries→Multimedia
libdvbsi → Libraries→Multimedia

libdvdnav → Libraries→Multimedia
libdvdread → Libraries→Multimedia

libebml → Libraries→Multimedia
libecore → Graphic libraries and applications (graphic/text)
libedbus → Graphic libraries and applications (graphic/text)
libedit → Libraries→ Text and terminal handling
libedje → Graphic libraries and applications (graphic/text)
libee → Libraries→ Other
libeet → Graphic libraries and applications (graphic/text)

libefreet → Graphic libraries and applications (graphic/text)
libeina → Graphic libraries and applications (graphic/text)
libeio → Graphic libraries and applications (graphic/text)

libelementary → Graphic libraries and applications (graphic/text)
libembryo → Graphic libraries and applications (graphic/text)

libenca → Libraries→ Text and terminal handling
Liberation (Free fonts) → Graphic libraries and applications (graphic/text)

libesmtp →Mail
libestr → Libraries→ Text and terminal handling

libethumb → Graphic libraries and applications (graphic/text)
libev → Libraries→ Other

libevas → Graphic libraries and applications (graphic/text)
libevas generic loaders → Graphic libraries and applications (graphic/text)

libevdev → Libraries→ Other

The Buildroot user manual 97 / 116

Packages Target packages→ . . .
libevent → Libraries→ Other
libexif → Libraries→ Graphics

libeXosip2 → Libraries→ Networking
libfcgi → Libraries→ Networking
libffi → Libraries→ Other

libfontenc → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libfreefare → Libraries→ Hardware handling
libfribidi → Libraries→ Text and terminal handling

libFS → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libfslcodec → Libraries→Multimedia
libfslparser → Libraries→Multimedia

libfslvpuwrap → Libraries→Multimedia
libftdi → Libraries→ Hardware handling
libfuse → Libraries→ Filesystem
libgail → Libraries→ Graphics
libgc → Libraries→ Other

libgcrypt → Libraries→ Crypto
libgeotiff → Libraries→ Graphics
libglade → Libraries→ Graphics
libglew → Libraries→ Graphics
libglib2 → Libraries→ Other
libglu → Libraries→ Graphics

libgpg-error → Libraries→ Crypto
libgpgme → Libraries→ Crypto
libgsasl → Libraries→ Networking
libgtk2 → Libraries→ Graphics
libgtk3 → Libraries→ Graphics
libhid → Libraries→ Hardware handling
libical → Libraries→ Other
libICE → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

libiconv → Libraries→ Text and terminal handling
libid3tag → Libraries→ Audio/Sound

libidn → Libraries→ Networking
libinput → Libraries→ Hardware handling
libiqrf → Libraries→ Hardware handling
libiscsi → Libraries→ Networking
libjson → Libraries→ JSON/XML
libksba → Libraries→ Crypto
libllcp → Libraries→ Hardware handling
liblo → Libraries→ Audio/Sound

liblockfile → Libraries→ Filesystem
liblog4c-localtime → Libraries→ Logging

liblogging → Libraries→ Logging
libmad → Libraries→ Audio/Sound

libmatroska → Libraries→Multimedia
libmbim → Libraries→ Hardware handling
libmbus → Libraries→ Networking

libmcrypt → Libraries→ Crypto
libmemcached → Libraries→ Networking

libmhash → Libraries→ Crypto
libmicrohttpd → Libraries→ Networking

libmms → Libraries→Multimedia
libmnl → Libraries→ Networking

libmodbus → Libraries→ Networking
libmodplug → Libraries→ Audio/Sound

libmpd → Libraries→ Audio/Sound

The Buildroot user manual 98 / 116

Packages Target packages→ . . .
libmpdclient → Libraries→ Audio/Sound

libmpeg2 → Libraries→Multimedia
libndp → Libraries→ Networking
libneon → Libraries→ Networking

libnetfilter_acct → Libraries→ Networking
libnetfilter_conntrack → Libraries→ Networking
libnetfilter_cthelper → Libraries→ Networking

libnetfilter_cttimeout → Libraries→ Networking
libnetfilter_log → Libraries→ Networking

libnetfilter_queue → Libraries→ Networking
libnfc → Libraries→ Hardware handling

libnfnetlink → Libraries→ Networking
libnfs → Libraries→ Filesystem

libnftnl → Libraries→ Networking
libnl → Libraries→ Networking

libnspr → Libraries→ Other
libnss → Libraries→ Crypto

liboauth → Libraries→ Networking
libogg → Libraries→Multimedia

liboping → Libraries→ Networking
libosip2 → Libraries→ Networking
libpcap → Libraries→ Networking

libpciaccess → Libraries→ Hardware handling
libpfm4 → Libraries→ Other

libphidget → Libraries→ Hardware handling
libplayer → Libraries→Multimedia
libplist → Libraries→ Other
libpng → Libraries→ Graphics

libpthread-stubs → Libraries→ Other
libpthsem → Libraries→ Other

libqmi → Libraries→ Hardware handling
libqrencode → Libraries→ Graphics

libraw → Libraries→ Graphics
libraw1394 → Libraries→ Hardware handling

libreplaygain → Libraries→ Audio/Sound
librsvg → Libraries→ Graphics
librsync → Libraries→ Networking
librtlsdr → Libraries→ Hardware handling
librtmp → Libraries→ Networking

libsamplerate → Libraries→ Audio/Sound
libseccomp → Libraries→ Other

libsecret → Libraries→ Crypto
libsepol → Libraries→ Security
libserial → Libraries→ Hardware handling
libsexy → Graphic libraries and applications (graphic/text)
libsha1 → Libraries→ Crypto

libshairplay → Libraries→ Networking
libshout → Libraries→ Networking

libsigc++ → Libraries→ Other
libsigsegv → Libraries→ Other

libSM → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libsndfile → Libraries→ Audio/Sound

libsoc → Libraries→ Hardware handling
libsocketcan → Libraries→ Networking

libsoup → Libraries→ Networking
libsoxr → Libraries→ Audio/Sound

The Buildroot user manual 99 / 116

Packages Target packages→ . . .
libssh2 → Libraries→ Crypto

libstrophe → Libraries→ Networking
libsvg → Libraries→ Graphics

libsvg-cairo → Libraries→ Graphics
libsvgtiny → Libraries→ Graphics
libsysfs → Libraries→ Filesystem
libtasn1 → Libraries→ Other
libtheora → Libraries→Multimedia
libtirpc → Libraries→ Networking
libtool → Development tools

libtorrent → Libraries→ Networking
libtpl → Libraries→ Other

libubox → Libraries→ Other
libuci → Libraries→ Other

libungif → Libraries→ Graphics
libunistring → Libraries→ Text and terminal handling
libunwind → Libraries→ Other

libupnp → Libraries→ Networking
libupnpp → Libraries→ Networking
liburcu → Libraries→ Other
libusb → Libraries→ Hardware handling

libusb-compat → Libraries→ Hardware handling
libuv → Libraries→ Other
libv4l → Libraries→ Hardware handling
libva → Libraries→ Graphics

libva-intel-driver → Libraries→ Graphics
libvncserver → Libraries→ Networking

libvorbis → Libraries→ Audio/Sound
libvpx → Audio and video applications

libwebsockets → Libraries→ Networking
libX11 → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXau → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXaw → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libxcb → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

libXcomposite → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXcursor → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

libXdamage → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXdmcp → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

libXext → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXfixes → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXfont → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

libXft → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXi → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

libXinerama → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libxkbcommon → Libraries→ Hardware handling

libxkbfile → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libxml++ → Libraries→ JSON/XML
libxml2 → Libraries→ JSON/XML

libxmlrpc → Libraries→ JSON/XML
libXmu → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXpm → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

libXrandr → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXrender → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

libXres → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXScrnSaver → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libxshmfence → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

The Buildroot user manual 100 / 116

Packages Target packages→ . . .
libxslt → Libraries→ JSON/XML
libXt → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

libXtst → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXv → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

libXvMC → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXxf86dga → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
libXxf86vm → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

libyaml → Libraries→ JSON/XML
lighttpd → Networking applications
linenoise → Libraries→ Text and terminal handling

linknx → Networking applications
links → Networking applications

linphone → Networking applications
linux-firmware → Hardware handling→ Firmware

linux-fusion
communication layer
for DirectFB multi

→ Graphic libraries and applications (graphic/text)

linux-pam → Libraries→ Other
linux-zigbee → Networking applications

listres → Graphic libraries and applications (graphic/text)→ X11R7 Applications
LiTE (toolbox engine) → Graphic libraries and applications (graphic/text)

live555 → Libraries→Multimedia
ljlinenoise → Interpreter languages and scripting→ Lua libraries/modules
ljsyscall → Interpreter languages and scripting→ Lua libraries/modules

lm-sensors → Hardware handling
lmbench → Debugging, profiling and benchmark
lockdev → Libraries→ Filesystem

lockfile programs → Shell and utilities
log4cplus → Libraries→ Logging
log4cxx → Libraries→ Logging
logrotate → Shell and utilities
logsurfer → Shell and utilities

lpeg → Interpreter languages and scripting→ Lua libraries/modules
lpty → Interpreter languages and scripting→ Lua libraries/modules

lrandom → Interpreter languages and scripting→ Lua libraries/modules
lrzsz → Networking applications
lshw → Hardware handling
lsof → Debugging, profiling and benchmark

lsqlite3 → Interpreter languages and scripting→ Lua libraries/modules
lsuio → Hardware handling

ltp-testsuite → Debugging, profiling and benchmark
ltrace → Debugging, profiling and benchmark
LTris → Games

lttng-babeltrace → Debugging, profiling and benchmark
lttng-libust → Libraries→ Other

lttng-modules → Debugging, profiling and benchmark
lttng-tools → Debugging, profiling and benchmark

lua → Interpreter languages and scripting
lua-cjson → Interpreter languages and scripting→ Lua libraries/modules
lua-coat → Interpreter languages and scripting→ Lua libraries/modules

lua-coatpersistent → Interpreter languages and scripting→ Lua libraries/modules
lua-csnappy → Interpreter languages and scripting→ Lua libraries/modules

lua-ev → Interpreter languages and scripting→ Lua libraries/modules
lua-messagepack → Interpreter languages and scripting→ Lua libraries/modules

lua-msgpack-native → Interpreter languages and scripting→ Lua libraries/modules
lua-testmore → Interpreter languages and scripting→ Lua libraries/modules

The Buildroot user manual 101 / 116

Packages Target packages→ . . .
luabitop → Interpreter languages and scripting→ Lua libraries/modules
luacrypto → Interpreter languages and scripting→ Lua libraries/modules
luaexpat → Interpreter languages and scripting→ Lua libraries/modules

luaexpatutils → Interpreter languages and scripting→ Lua libraries/modules
luafilesystem → Interpreter languages and scripting→ Lua libraries/modules

luajit → Interpreter languages and scripting
luajson → Interpreter languages and scripting→ Lua libraries/modules

lualogging → Interpreter languages and scripting→ Lua libraries/modules
luaposix → Interpreter languages and scripting→ Lua libraries/modules
luasec → Interpreter languages and scripting→ Lua libraries/modules

luasocket → Interpreter languages and scripting→ Lua libraries/modules
luasql-sqlite3 → Interpreter languages and scripting→ Lua libraries/modules

luit → Graphic libraries and applications (graphic/text)→ X11R7 Applications
lunit → Interpreter languages and scripting→ Lua libraries/modules

lvm2 & device mapper → Hardware handling
lxc → System tools
lz4 → Compressors and decompressors
lzip → Compressors and decompressors
lzlib → Interpreter languages and scripting→ Lua libraries/modules
lzo → Libraries→ Compression and decompression

lzop → Compressors and decompressors
m4 (deprecated) → Development tools

macchanger → Networking applications
madplay → Audio and video applications

make → Development tools
makedepend → Graphic libraries and applications (graphic/text)→ X11R7 Utilities

makedevs → Filesystem and flash utilities
Matchbox Desktop → Graphic libraries and applications (graphic/text)

Matchbox Panel → Graphic libraries and applications (graphic/text)
Matchbox session

common files
→ Graphic libraries and applications (graphic/text)

Matchbox Virtual
Keyboard

→ Graphic libraries and applications (graphic/text)

MatchBox Window
Manager

→ Graphic libraries and applications (graphic/text)

mcookie → Graphic libraries and applications (graphic/text)→ X11R7 Utilities
mcrypt →Miscellaneous
mdadm → Hardware handling

media-ctl → Hardware handling
mediastreamer → Libraries→Multimedia

memcached → Networking applications
memstat → Debugging, profiling and benchmark

memtester → Hardware handling
mesa3d → Graphic libraries and applications (graphic/text)

mesa3d-demos → Graphic libraries and applications (graphic/text)
metacity → Graphic libraries and applications (graphic/text)
midori → Graphic libraries and applications (graphic/text)

mii-diag → Networking applications
Mini-XML → Libraries→ JSON/XML
minicom → Hardware handling
minidlna → Networking applications
mkfontdir → Graphic libraries and applications (graphic/text)→ X11R7 Applications

mkfontscale → Graphic libraries and applications (graphic/text)→ X11R7 Applications
mmc-utils → Filesystem and flash utilities

mobile-broadband-
provider-info

→Miscellaneous

The Buildroot user manual 102 / 116

Packages Target packages→ . . .
modemmanager → Networking applications
modplugtools → Audio and video applications

mongoose → Networking applications
mongrel2 → Networking applications

monit → System tools
mono → Interpreter languages and scripting

mp4v2 → Libraries→ Audio/Sound
mpc → Libraries→ Other
mpd → Audio and video applications

mpdecimal → Libraries→ Other
mpfr → Libraries→ Other

mpg123 → Audio and video applications
mplayer → Audio and video applications
mrouted → Networking applications
msgpack → Libraries→ Other
msmtp →Mail

mtd, jffs2 and ubi/ubifs
tools

→ Filesystem and flash utilities

mtdev → Libraries→ Hardware handling
mtdev2tuio → Libraries→ Other

mtools → Filesystem and flash utilities
mtr → Networking applications

Multimedia Module → Graphic libraries and applications (graphic/text)
musepack → Audio and video applications

mutt →Mail
MySQL → Libraries→ Database

nano → Text editors and viewers
nanocom → Hardware handling

nbd → Networking applications
ncdu → System tools
ncftp → Networking applications

ncmpc → Audio and video applications
ncurses → Libraries→ Text and terminal handling

ndisc6 tools → Networking applications
ne10 → Libraries→ Hardware handling
neard → Hardware handling

neardal → Libraries→ Hardware handling
net-tools → Networking applications
netatalk → Networking applications
netcat → Networking applications

netcat-openbsd → Networking applications
netperf → Debugging, profiling and benchmark
netplug → Networking applications
netsnmp → Networking applications

netstat-nat → Networking applications
nettle → Libraries→ Crypto

networkmanager → Networking applications
newt → Libraries→ Text and terminal handling

nfacct → Networking applications
nfs-utils → Filesystem and flash utilities
nftables → Networking applications
nginx → Networking applications
ngircd → Networking applications
ngrep → Networking applications
nmap → Networking applications
nodejs → Interpreter languages and scripting

The Buildroot user manual 103 / 116

Packages Target packages→ . . .
noip → Networking applications

nss-mdns → Libraries→ Networking
ntfs-3g → Filesystem and flash utilities

ntp → Networking applications
numactl → System tools

nut → System tools
nuttcp → Networking applications

ocf-linux → Libraries→ Crypto→ cryptodev variant
oclock → Graphic libraries and applications (graphic/text)→ X11R7 Applications
ocrad → Graphic libraries and applications (graphic/text)

odhcploc → Networking applications
ofono → Hardware handling

ola (open lighting
architecture)

→ Hardware handling

olsrd → Networking applications
omniorb → Libraries→ Networking

on2-8170-libs → Audio and video applications
on2-8170-modules → Hardware handling

open2300 → Hardware handling
opencore-amr → Libraries→ Audio/Sound

opencv → Libraries→ Graphics
openntpd → Networking applications
openobex → Networking applications
openocd → Hardware handling
openpgm → Libraries→ Networking

openpowerlink → Hardware handling
openssh → Networking applications
openssl → Libraries→ Crypto

openswan → Networking applications
OpenTyrian → Games

OpenTyrian data → Games
openvmtools → System tools

openvpn → Networking applications
opkg → Package managers

oprofile → Debugging, profiling and benchmark
opus → Libraries→ Audio/Sound

opus-tools → Audio and video applications
orbit → Interpreter languages and scripting→ Lua libraries/modules
orc → Libraries→ Other

oRTP → Libraries→ Networking
owl-linux → Hardware handling
p11-kit → Libraries→ Other
p910nd → Networking applications
pango → Libraries→ Graphics
parted → Hardware handling
patch → Development tools

pax-utils → Debugging, profiling and benchmark
pciutils → Hardware handling

pcmanfm → Graphic libraries and applications (graphic/text)
pcre → Libraries→ Text and terminal handling

pcsc-lite → Libraries→ Hardware handling
perf → Debugging, profiling and benchmark
perl → Interpreter languages and scripting

perl-datetime-tiny → Interpreter languages and scripting→ Perl libraries/modules
perl-gd → Interpreter languages and scripting→ Perl libraries/modules

perl-gdgraph → Interpreter languages and scripting→ Perl libraries/modules

The Buildroot user manual 104 / 116

Packages Target packages→ . . .
perl-gdtextutil → Interpreter languages and scripting→ Perl libraries/modules

perl-io-socket-ssl → Interpreter languages and scripting→ Perl libraries/modules
perl-json-tiny → Interpreter languages and scripting→ Perl libraries/modules

perl-mojolicious → Interpreter languages and scripting→ Perl libraries/modules
perl-net-ssleay → Interpreter languages and scripting→ Perl libraries/modules
perl-path-tiny → Interpreter languages and scripting→ Perl libraries/modules
perl-try-tiny → Interpreter languages and scripting→ Perl libraries/modules

perl-xml-libxml → Interpreter languages and scripting→ Perl libraries/modules
perl-xml-

namespacesupport
→ Interpreter languages and scripting→ Perl libraries/modules

perl-xml-sax → Interpreter languages and scripting→ Perl libraries/modules
perl-xml-sax-base → Interpreter languages and scripting→ Perl libraries/modules
phidgetwebservice → Networking applications

php → Interpreter languages and scripting
php-geoip → Interpreter languages and scripting→ External php extensions
php-gnupg → Interpreter languages and scripting→ External php extensions

php-imagick → Interpreter languages and scripting→ External php extensions
php-memcached → Interpreter languages and scripting→ External php extensions

php-ssh2 → Interpreter languages and scripting→ External php extensions
php-yaml → Interpreter languages and scripting→ External php extensions
php-zmq → Interpreter languages and scripting→ External php extensions
picocom → Hardware handling
pifmrds → Hardware handling
pinentry → Shell and utilities
pixman → Libraries→ Graphics
pkgconf → Development tools

poco → Libraries→ Other
polarssl → Libraries→ Crypto
polkit → System tools

poppler → Libraries→ Graphics
popt → Libraries→ Text and terminal handling

portaudio → Libraries→ Audio/Sound
portmap → Networking applications

postgresql → Libraries→ Database
powerpc-utils → System tools

pppd → Networking applications
pps-tools → Hardware handling

pptp-linux → Networking applications
PrBoom → Games

presentproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
procps-ng → System tools

proftpd → Networking applications
protobuf → Libraries→ Other

protobuf-c → Libraries→ Other
proxychains-ng → Networking applications

psmisc → System tools
psplash → Graphic libraries and applications (graphic/text)

ptpd → Networking applications
ptpd2 → Networking applications

pulseaudio → Audio and video applications
pure-ftpd → Networking applications

pv → Debugging, profiling and benchmark
pwgen → System tools
python → Interpreter languages and scripting

python-bottle → Interpreter languages and scripting→ external python modules
python-cffi → Interpreter languages and scripting→ external python modules

The Buildroot user manual 105 / 116

Packages Target packages→ . . .
python-configobj → Interpreter languages and scripting→ external python modules

python-configshell-fb → Interpreter languages and scripting→ external python modules
python-crc16 → Interpreter languages and scripting→ external python modules

python-daemon → Interpreter languages and scripting→ external python modules
python-dialog → Interpreter languages and scripting→ external python modules
python-dpkt → Interpreter languages and scripting→ external python modules
python-flup → Interpreter languages and scripting→ external python modules
python-id3 → Interpreter languages and scripting→ external python modules
python-ipy → Interpreter languages and scripting→ external python modules

python-ipython → Interpreter languages and scripting→ external python modules
python-json-schema-

validator
→ Interpreter languages and scripting→ external python modules

python-keyring → Interpreter languages and scripting→ external python modules
python-libconfig → Interpreter languages and scripting→ external python modules

python-mad → Interpreter languages and scripting→ external python modules
python-meld3 → Interpreter languages and scripting→ external python modules

python-msgpack → Interpreter languages and scripting→ external python modules
python-netifaces → Interpreter languages and scripting→ external python modules

python-nfc → Interpreter languages and scripting→ external python modules
python-numpy → Interpreter languages and scripting→ external python modules

python-posix-ipc → Interpreter languages and scripting→ external python modules
python-protobuf → Interpreter languages and scripting→ external python modules

python-pyasn → Interpreter languages and scripting→ external python modules
python-pycrypto → Interpreter languages and scripting→ external python modules
python-pygame → Interpreter languages and scripting→ external python modules

python-pyparsing → Interpreter languages and scripting→ external python modules
python-pypcap → Interpreter languages and scripting→ external python modules

python-pyro → Interpreter languages and scripting→ external python modules
python-pysnmp → Interpreter languages and scripting→ external python modules

python-pysnmp-apps → Interpreter languages and scripting→ external python modules
python-pysnmp-mibs → Interpreter languages and scripting→ external python modules

python-pyusb → Interpreter languages and scripting→ external python modules
python-pyzmq → Interpreter languages and scripting→ external python modules

python-rtslib-fb → Interpreter languages and scripting→ external python modules
python-serial → Interpreter languages and scripting→ external python modules

python-setuptools → Interpreter languages and scripting→ external python modules
python-simplejson → Interpreter languages and scripting→ external python modules

python-thrift → Interpreter languages and scripting→ external python modules
python-tornado → Interpreter languages and scripting→ external python modules
python-urwid → Interpreter languages and scripting→ external python modules

python-versiontools → Interpreter languages and scripting→ external python modules
python3 → Interpreter languages and scripting
qdecoder → Libraries→ Networking
QEMU →Miscellaneous

qextserialport → Graphic libraries and applications (graphic/text)
qhull → Libraries→ Other
qjson → Graphic libraries and applications (graphic/text)
qlibc → Libraries→ Other

Qt → Graphic libraries and applications (graphic/text)
Qt5 → Graphic libraries and applications (graphic/text)

qt5base → Graphic libraries and applications (graphic/text)
qt5connectivity → Graphic libraries and applications (graphic/text)
qt5declarative → Graphic libraries and applications (graphic/text)

qt5enginio → Graphic libraries and applications (graphic/text)
qt5graphicaleffects → Graphic libraries and applications (graphic/text)
qt5imageformats → Graphic libraries and applications (graphic/text)

The Buildroot user manual 106 / 116

Packages Target packages→ . . .
qt5multimedia → Graphic libraries and applications (graphic/text)

qt5quick1 → Graphic libraries and applications (graphic/text)
qt5quickcontrols → Graphic libraries and applications (graphic/text)

qt5script → Graphic libraries and applications (graphic/text)
qt5sensors → Graphic libraries and applications (graphic/text)

qt5serialport → Graphic libraries and applications (graphic/text)
qt5svg → Graphic libraries and applications (graphic/text)

qt5webkit → Graphic libraries and applications (graphic/text)
qt5webkit examples → Graphic libraries and applications (graphic/text)

qt5websockets → Graphic libraries and applications (graphic/text)
qt5x11extras → Graphic libraries and applications (graphic/text)

qt5xmlpatterns → Graphic libraries and applications (graphic/text)
qtuio → Graphic libraries and applications (graphic/text)

quagga → Networking applications
quota → System tools
qwt → Graphic libraries and applications (graphic/text)

radvd → Networking applications
ramspeed → Debugging, profiling and benchmark

ramspeed/smp → Debugging, profiling and benchmark
randrproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
rapidjson → Libraries→ JSON/XML
rdesktop → Graphic libraries and applications (graphic/text)
read-edid → Hardware handling
readline → Libraries→ Text and terminal handling

recordproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
redis → Libraries→ Database

renderproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
resourceproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols

rgb → Graphic libraries and applications (graphic/text)→ X11R7 Applications
rings → Interpreter languages and scripting→ Lua libraries/modules

rng-tools → Hardware handling
roxml → Libraries→ JSON/XML

rp-pppoe → Networking applications
rpcbind → Networking applications

rpi-firmware → Hardware handling→ Firmware
rpi-userland → Hardware handling

rpm → Package managers
rrdtool → Graphic libraries and applications (graphic/text)

rsh-redone → Networking applications
rstart → Graphic libraries and applications (graphic/text)→ X11R7 Applications
rsync → Networking applications

rsyslog → System tools
rt-tests → Debugging, profiling and benchmark

rtai → Real-Time
rtorrent → Networking applications
rtptools → Networking applications
rubix → Games
ruby → Interpreter languages and scripting

samba → Networking applications
samba4 → Networking applications

sane-backends → Hardware handling
SawMan (Window

Manager)
→ Graphic libraries and applications (graphic/text)

schifra → Libraries→ Other
sconeserver → Networking applications

screen → Shell and utilities

The Buildroot user manual 107 / 116

Packages Target packages→ . . .
Script Module → Graphic libraries and applications (graphic/text)

scripts → Graphic libraries and applications (graphic/text)→ X11R7 Applications
scrnsaverproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols

SDL → Graphic libraries and applications (graphic/text)
SDL_gfx → Graphic libraries and applications (graphic/text)

SDL_image → Graphic libraries and applications (graphic/text)
SDL_mixer → Graphic libraries and applications (graphic/text)

SDL_net → Graphic libraries and applications (graphic/text)
SDL_sound → Graphic libraries and applications (graphic/text)
SDL_TTF → Graphic libraries and applications (graphic/text)

sdparm → Hardware handling
sed → Development tools

ser2net → Networking applications
sessreg → Graphic libraries and applications (graphic/text)→ X11R7 Applications
setserial → Hardware handling

setxkbmap → Graphic libraries and applications (graphic/text)→ X11R7 Applications
sg3-utils → Hardware handling

shairport-sync → Networking applications
shared-mime-info →Miscellaneous

shareware Doom WAD
file

→ Games

showfont → Graphic libraries and applications (graphic/text)→ X11R7 Applications
simicsfs → Filesystem and flash utilities
sispmctl → Hardware handling

slang → Libraries→ Text and terminal handling
slirp → Libraries→ Networking

smack → System tools
smartmontools → Hardware handling

smcroute → Networking applications
smproxy → Graphic libraries and applications (graphic/text)→ X11R7 Applications

smstools3 → Hardware handling
snappy → Libraries→ Compression and decompression
snmp++ → Libraries→ Networking

snowball-hdmiservice → Hardware handling
snowball-init →Miscellaneous

socat → Networking applications
socketcand → Networking applications

sound-theme-borealis →Miscellaneous
sound-theme-
freedesktop

→Miscellaneous

sox → Audio and video applications
spawn-fcgi → Networking applications

speex → Libraries→ Audio/Sound
spice protocol → Networking applications
spice server → Networking applications
spidev_test → Debugging, profiling and benchmark
sqlcipher → Libraries→ Database

sqlite → Libraries→ Database
squashfs → Filesystem and flash utilities

squid → Networking applications
sredird → Hardware handling

sshfs (FUSE) → Filesystem and flash utilities
sshpass → Networking applications
sstrip → Development tools

startup-notification → Libraries→ Other
statserial → Hardware handling

The Buildroot user manual 108 / 116

Packages Target packages→ . . .
strace → Debugging, profiling and benchmark
stress → Debugging, profiling and benchmark

strongswan → Networking applications
stunnel → Networking applications

subversion → Development tools
sudo → Shell and utilities

sunxi nand-part → Filesystem and flash utilities
sunxi script.bin board

file
→ Hardware handling→ Firmware

sunxi-cedarx → Hardware handling
sunxi-mali → Hardware handling
supervisor → System tools

SVG Module → Graphic libraries and applications (graphic/text)
sylpheed →Mail
synergy → Graphic libraries and applications (graphic/text)

syslogd & klogd → System tools
sysprof → Debugging, profiling and benchmark
sysstat → Hardware handling

systemd → System tools
sysvinit → System tools
taglib → Libraries→ Audio/Sound

tar → Development tools
targetcli-fb → Hardware handling

tcl → Interpreter languages and scripting
tclap → Libraries→ Text and terminal handling
tcllib → Interpreter languages and scripting→ tcl libraries/modules

tcpdump → Networking applications
tcping → Networking applications

tcpreplay → Networking applications
tftpd → Networking applications
thrift → Libraries→ Networking
thttpd → Networking applications
ti-gfx → Hardware handling
ti-uim → Hardware handling
ti-utils → Hardware handling

tidsp-binaries → Audio and video applications
tiff → Libraries→ Graphics

time → Shell and utilities
tinyalsa → Libraries→ Audio/Sound

tinyhttpd → Networking applications
tinymembench → Debugging, profiling and benchmark

tinyxml → Libraries→ JSON/XML
tmux → Shell and utilities

tn5250 → Networking applications
torsmo → Graphic libraries and applications (graphic/text)

trace-cmd → Debugging, profiling and benchmark
transmission → Networking applications

tree → Development tools
tremor (fixed point

vorbis decoder)
→ Libraries→ Audio/Sound

trinity → Debugging, profiling and benchmark
tslib → Libraries→ Hardware handling

tstools → Audio and video applications
tvheadend → Networking applications

twm → Graphic libraries and applications (graphic/text)→ X11R7 Applications
twolame → Audio and video applications

The Buildroot user manual 109 / 116

Packages Target packages→ . . .
u-boot tools → Hardware handling

udisks → Hardware handling
udpcast → Networking applications
uemacs → Text editors and viewers
ulogd → Networking applications

unionfs (FUSE) → Filesystem and flash utilities
upmpdcli → Audio and video applications

urg → Libraries→ Hardware handling
usb_modeswitch → Hardware handling

usb_modeswitch_data → Hardware handling
usbmount → Hardware handling
usbredir → Libraries→ Networking
usbutils → Hardware handling
ushare → Networking applications

ussp-push → Networking applications
util-linux → System tools

util-macros → Graphic libraries and applications (graphic/text)→ X11R7 Utilities
ux500-firmware → Hardware handling→ Firmware

valgrind → Debugging, profiling and benchmark
vde2 → Networking applications

videoproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
viewres → Graphic libraries and applications (graphic/text)→ X11R7 Applications

vim → Text editors and viewers
vlc → Audio and video applications

vo-aacenc → Libraries→ Audio/Sound
vorbis-tools → Audio and video applications

vpnc → Networking applications
vsftpd → Networking applications
vtun → Networking applications

w_scan → Hardware handling
wavpack → Audio and video applications
wayland → Libraries→ Graphics
webkit → Libraries→ Graphics

WebKit Module → Graphic libraries and applications (graphic/text)
webp → Libraries→ Graphics

webrtc-audio-
processing

→ Libraries→ Audio/Sound

weston → Graphic libraries and applications (graphic/text)
wget → Networking applications

whetstone → Debugging, profiling and benchmark
which → Shell and utilities
whois → Networking applications

windowswmproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
wipe → Hardware handling

wireless tools → Networking applications
wireless-regdb → Networking applications

wireshark → Networking applications
wmctrl → Graphic libraries and applications (graphic/text)

wpa_supplicant → Networking applications
wsapi → Interpreter languages and scripting→ Lua libraries/modules
wvdial → Networking applications

wvstreams → Libraries→ Networking
x11perf → Graphic libraries and applications (graphic/text)→ X11R7 Applications
x11vnc → Graphic libraries and applications (graphic/text)
x264 → Libraries→Multimedia
xauth → Graphic libraries and applications (graphic/text)→ X11R7 Applications

The Buildroot user manual 110 / 116

Packages Target packages→ . . .
xavante → Interpreter languages and scripting→ Lua libraries/modules

xbacklight → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xbiff → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xbitmaps → Graphic libraries and applications (graphic/text)→ X11R7 Other data
xbmc → Audio and video applications

xbmc-addon-xvdr → Audio and video applications
xbmc-pvr-addons → Audio and video applications

xcalc → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xcb-proto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
xcb-util → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

xcb-util-image → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
xcb-util-keysyms → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

xcb-util-wm → Graphic libraries and applications (graphic/text)→ X11R7 Libraries
xclipboard → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xclock → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xcmiscproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols

xcmsdb → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xconsole → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xcursor-transparent-
theme

→ Graphic libraries and applications (graphic/text)→ X11R7 Other data

xcursorgen → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xdata_xcursor-themes → Graphic libraries and applications (graphic/text)→ X11R7 Other data

xdbedizzy → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xditview → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xdm → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xdpyinfo → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xdriinfo → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xedit → Graphic libraries and applications (graphic/text)→ X11R7 Applications
Xenomai Userspace → Real-Time

xerces-c++ → Libraries→ JSON/XML
xev → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xextproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
xeyes → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xf86-input-evdev → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-input-joystick → Graphic libraries and applications (graphic/text)→ X11R7 Drivers

xf86-input-keyboard → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-input-mouse → Graphic libraries and applications (graphic/text)→ X11R7 Drivers

xf86-input-synaptics → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-input-tslib → Graphic libraries and applications (graphic/text)→ X11R7 Drivers

xf86-input-vmmouse → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-input-void → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-ark → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-ast → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-ati → Graphic libraries and applications (graphic/text)→ X11R7 Drivers

xf86-video-cirrus → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-dummy → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-fbdev → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-geode → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-glide → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-glint → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-i128 → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-intel → Graphic libraries and applications (graphic/text)→ X11R7 Drivers

xf86-video-mach64 → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-mga → Graphic libraries and applications (graphic/text)→ X11R7 Drivers

xf86-video-neomagic → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-nv → Graphic libraries and applications (graphic/text)→ X11R7 Drivers

The Buildroot user manual 111 / 116

Packages Target packages→ . . .
xf86-video-
openchrome

→ Graphic libraries and applications (graphic/text)→ X11R7 Drivers

xf86-video-r128 → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-savage → Graphic libraries and applications (graphic/text)→ X11R7 Drivers

xf86-video-
siliconmotion

→ Graphic libraries and applications (graphic/text)→ X11R7 Drivers

xf86-video-sis → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-tdfx → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-tga → Graphic libraries and applications (graphic/text)→ X11R7 Drivers

xf86-video-trident → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-v4l → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-vesa → Graphic libraries and applications (graphic/text)→ X11R7 Drivers

xf86-video-vmware → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86-video-voodoo → Graphic libraries and applications (graphic/text)→ X11R7 Drivers

xf86-video-wsfb → Graphic libraries and applications (graphic/text)→ X11R7 Drivers
xf86bigfontproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols

xf86dga → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xf86dgaproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
xf86driproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols

xf86vidmodeproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
xfd → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xfontsel → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xfs → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xfsinfo → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xfsprogs → Filesystem and flash utilities
xgamma → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xgc → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xhost → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xineramaproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
xinetd → Networking applications
xinit → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xinput → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xinput-calibrator → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xkbcomp → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xkbevd → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xkbprint → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xkbutils → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xkeyboard-config → Graphic libraries and applications (graphic/text)
xkill → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xl2tp → Networking applications
xload → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xlogo → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xlsatoms → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xlsclients → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xlsfonts → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xmag → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xman → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xmessage → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xmh → Graphic libraries and applications (graphic/text)→ X11R7 Applications

XML Patterns Module → Graphic libraries and applications (graphic/text)
xmlstarlet → Shell and utilities
xmodmap → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xmore → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xorg-server → Graphic libraries and applications (graphic/text)→ X11R7 Servers

xpr → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xprop → Graphic libraries and applications (graphic/text)→ X11R7 Applications

The Buildroot user manual 112 / 116

Packages Target packages→ . . .
xproto → Graphic libraries and applications (graphic/text)→ X11R7 X protocols
xrandr → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xrdb → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xrefresh → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xscreensaver → Graphic libraries and applications (graphic/text)

xset → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xsetmode → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xsetpointer → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xsetroot → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xsm → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xstdcmap → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xterm → Graphic libraries and applications (graphic/text)
xtrans → Graphic libraries and applications (graphic/text)→ X11R7 Libraries

xvidtune → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xvinfo → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xvkbd → Graphic libraries and applications (graphic/text)
xwd → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xwininfo → Graphic libraries and applications (graphic/text)→ X11R7 Applications
xwud → Graphic libraries and applications (graphic/text)→ X11R7 Applications

xz-utils → Compressors and decompressors
yajl → Libraries→ JSON/XML

yaml-cpp → Libraries→ JSON/XML
yasm → Development tools
yavta → Audio and video applications
ympd → Audio and video applications

zd1211-firmware → Hardware handling→ Firmware
zeromq → Libraries→ Networking

zlib → Libraries→ Compression and decompression
zlog → Libraries→ Logging

zmqpp → Libraries→ Networking
znc → Networking applications
zsh → Shell and utilities

zxing → Libraries→ Graphics
zyre → Libraries→ Networking

The Buildroot user manual 113 / 116

Chapter 25

List of virtual packages

These are the virtual packages known to Buildroot, with the corresponding symbols and providers.

Virtual
packages

Symbols Providers

cryptodev BR2_PACKAGE_HAS_CRYPTODEV cryptodev-linux, ocf-linux
jpeg BR2_PACKAGE_HAS_JPEG jpeg, jpeg-turbo

libegl BR2_PACKAGE_HAS_LIBEGL mesa3d (w/ OpenGL EGL), gpu-viv-bin-mx6q,
rpi-userland, sunxi-mali, ti-gfx

libgl BR2_PACKAGE_HAS_LIBGL mesa3d (w/ DRI swrast driver), mesa3d (w/ DRI
i915 driver), mesa3d (w/ DRI i965 driver), mesa3d
(w/ DRI radeon driver)

libgles BR2_PACKAGE_HAS_LIBGLES mesa3d (w/ OpenGL ES), gpu-viv-bin-mx6q,
rpi-userland, sunxi-mali, ti-gfx

libopenmax BR2_PACKAGE_HAS_LIBOPENMAX bellagio, rpi-userland
libopenvg BR2_PACKAGE_HAS_LIBOPENVG gpu-viv-bin-mx6q, rpi-userland

luainterpreter BR2_PACKAGE_HAS_LUAINTERPRETER lua, luajit
powervr BR2_PACKAGE_HAS_POWERVR ti-gfx

udev BR2_PACKAGE_HAS_UDEV eudev, systemd

The Buildroot user manual 114 / 116

Chapter 26

List of host utilities available in Buildroot

The following packages are all available in the menu Host utilities.

Packages
host cramfs
host dfu-util

host dos2unix
host dosfstools
host e2fsprogs
host genext2fs
host genimage
host genpart

host lpc3250loader
host mtd, jffs2 and ubi/ubifs

tools
host mtools

host omap-u-boot-utils
host openocd
host parted

host patchelf
host pwgen
host sam-ba

host squashfs
host sunxi-tools
host u-boot tools

host util-linux
host-e2tools

The Buildroot user manual 115 / 116

Chapter 27

Deprecated features

The following features are marked as deprecated in Buildroot due to them being either too old or unmaintained. They will be
removed at some point, so stop using them. Each deprecated symbol in kconfig depends on a symbol BR2_DEPRECATED_SIN
CE_xxxx_xx, which provides an indication of when the feature can be removed: features will not be removed within the year
following deprecation. For example, a symbol depending on BR2_DEPRECATED_SINCE_2013_05 can be removed from
2014.05 onwards.

Features Location
AVR32 Target options→ Target Architecture

mips I (generic) Target options→ Target Architecture Variant
mips II Target options→ Target Architecture Variant
mips III Target options→ Target Architecture Variant
mips IV Target options→ Target Architecture Variant

sstrip Build options→ strip command for binaries on target
Linux 3.0.x kernel

headers
Toolchain→ Kernel Headers

Linux 3.11.x kernel
headers

Toolchain→ Kernel Headers

Linux 3.13.x kernel
headers

Toolchain→ Kernel Headers

Linux 3.15.x kernel
headers

Toolchain→ Kernel Headers

Enable Objective-C
support

Toolchain

Enable Fortran support Toolchain
Xilinx Little Endian

Microblaze GNU Tools
14.3

Toolchain→ Toolchain

Xilinx Little Endian
Microblaze GNU Tools

v2

Toolchain→ Toolchain

Xilinx Big Endian
Microblaze GNU Tools

Toolchain→ Toolchain

Xilinx Big Endian
Microblaze GNU Tools

Toolchain→ Toolchain

bison Target packages→ Development tools
distcc Target packages→ Development tools

Install flex binary on
target

Target packages→ Development tools

m4 Target packages→ Development tools
gob2 Target packages→ Graphic libraries and applications (graphic/text)

blackbox Target packages→ Graphic libraries and applications (graphic/text)

The Buildroot user manual 116 / 116

Features Location
v 0.8.x Target packages→ Interpreter languages and scripting→ Haserl version

Custom Network
Settings

Bootloaders

	I Getting started
	About Buildroot
	System requirements
	Mandatory packages
	Optional packages

	Getting Buildroot
	Buildroot quick start
	Community resources

	II User guide
	Buildroot configuration
	Cross-compilation toolchain
	Internal toolchain backend
	External toolchain backend
	External toolchain wrapper

	/dev management
	init system

	Configuration of other components
	General Buildroot usage
	make tips
	Understanding when a full rebuild is necessary
	Understanding how to rebuild packages
	Offline builds
	Building out-of-tree
	Environment variables
	Dealing efficiently with filesystem images
	Graphing the dependencies between packages
	Graphing the build duration
	Integration with Eclipse
	Advanced usage
	Using the generated toolchain outside Buildroot
	Using gdb in Buildroot
	Using ccache in Buildroot
	Location of downloaded packages
	Package-specific make targets
	Using Buildroot during development

	Project-specific customization
	Recommended directory structure
	Implementing layered customizations

	Keeping customizations outside of Buildroot
	Storing the Buildroot configuration
	Storing the configuration of other components
	Customizing the generated target filesystem
	Setting file permissions and ownership and adding custom devices nodes

	Adding custom user accounts
	Customization after the images have been created
	Adding project-specific patches
	Adding project-specific packages
	Quick guide to storing your project-specific customizations

	Frequently Asked Questions & Troubleshooting
	The boot hangs after Starting network…
	Why is there no compiler on the target?
	Why are there no development files on the target?
	Why is there no documentation on the target?
	Why are some packages not visible in the Buildroot config menu?
	Why not use the target directory as a chroot directory?
	Why doesn't Buildroot generate binary packages (.deb, .ipkg…)?

	Known issues
	Legal notice and licensing
	Complying with open source licenses
	License abbreviations
	Complying with the Buildroot license

	Beyond Buildroot
	Boot the generated images
	NFS boot

	Chroot

	III Developer guide
	How Buildroot works
	Coding style
	Config.in file
	The .mk file
	The documentation

	Adding support for a particular board
	Adding new packages to Buildroot
	Package directory
	Config.in file
	Choosing depends on or select
	Dependencies on target and toolchain options
	Dependencies on a Linux kernel built by buildroot
	Dependencies on udev /dev management
	Dependencies on features provided by virtual packages

	The .mk file
	The .hash file
	Infrastructure for packages with specific build systems
	generic-package tutorial
	generic-package reference

	Infrastructure for autotools-based packages
	autotools-package tutorial
	autotools-package reference

	Infrastructure for CMake-based packages
	cmake-package tutorial
	cmake-package reference

	Infrastructure for Python packages
	python-package tutorial
	python-package reference

	Infrastructure for LuaRocks-based packages
	luarocks-package tutorial
	luarocks-package reference

	Infrastructure for Perl/CPAN packages
	perl-package tutorial
	perl-package reference

	Infrastructure for virtual packages
	virtual-package tutorial
	Virtual package's Config.in file
	Virtual package's .mk file
	Provider's Config.in file
	Provider's .mk file
	Notes on depending on a virtual package
	Notes on depending on a specific provider

	Infrastructure for packages using kconfig for configuration files
	Infrastructure for asciidoc documents
	asciidoc-document tutorial
	asciidoc-document reference

	Hooks available in the various build steps
	Using the POST_RSYNC hook

	Gettext integration and interaction with packages
	Tips and tricks
	Package name, config entry name and makefile variable relationship
	How to add a package from GitHub

	Conclusion

	Patching a package
	Providing patches
	Downloaded
	Within Buildroot
	Global patch directory

	How patches are applied
	Format and licensing of the package patches
	Integrating patches found on the Web

	Download infrastructure
	Debugging Buildroot
	Contributing to Buildroot
	Reproducing, analyzing and fixing bugs
	Analyzing and fixing autobuild failures
	Reviewing and testing patches
	Applying Patches from Patchwork

	Work on items from the TODO list
	Submitting patches
	Cover letter
	Patch revision changelog

	Reporting issues/bugs or getting help

	IV Appendix
	Makedev syntax documentation
	Makeusers syntax documentation
	List of target packages available in Buildroot
	List of virtual packages
	List of host utilities available in Buildroot
	Deprecated features

